Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[101270] Artykuł:

Parametric Analysis of Tensegrity Plate-Like Structures: Part 1—Qualitative Analysis

Czasopismo: Applied Sciences - Basel   Tom: 10, Zeszyt: 20, Strony: paper: 7042
ISSN:  2076-3417
Opublikowano: Pażdziernik 2020
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Paulina Obara orcid logo WBiAKatedra Mechaniki, Konstrukcji Metalowych i Metod Komputerowych *Takzaliczony do "N"Inżynieria lądowa i transport5050.00100.00  
Justyna Tomasik orcid logo WBiAKatedra Mechaniki, Konstrukcji Metalowych i Metod Komputerowych *Niedoktorant szkoły doktorskiejInżynieria lądowa i transport5050.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

tensegrity  singular value decomposition SVD  spectral analysis  self-stress state  infinitesimal mechanism  modified Quartex 



Abstract:

The study includes parametric analysis of special spatial rod grids called tensegrity
plate-like structures. Tensegrity structures consist of only compression and tension components
arranged in a system, whose unique mechanical and mathematical properties distinguish them from
conventional cable–strut frameworks. Complete analysis of tensegrity structures is a two-stage
process. The first stage includes the identification of self-stress states and infinitesimal mechanisms
(qualitative analysis). The second stage focuses on the behaviour of tensegrities under external loads
(quantitative analysis). In the paper, a qualitative analysis of tensegrity plate-like structures built with
modified Quartex modules was conducted. Starting from a single-module structure, more complex
cases were sequentially analysed. The different ways of plate support were considered. To carry out
a qualitative assessment, a spectral analysis of the truss matrices and singular value decomposition
of the compatibility matrix were used. The characteristic features of tensegrity structures were
identified. On this basis, the plates were classified into one of the four groups defined in the paper,
i.e., ideal tensegrity, “pure” tensegrity and structures with tensegrity features of class 1 or class 2.
This classification is important due to different behaviours of the structure under external actions.
The qualitative analysis carried out in the paper is the basis for a quantitative analysis.



B   I   B   L   I   O   G   R   A   F   I   A
1. Gilewski, W.
Obara, P.
Kłosowska, J. Self-stress control of real civil engineering tensegrity structures.
AIP Conf. Proc. 2018, 1922, 150004.
2. Gilewski, W.
Kłosowska, J.
Obara, P. The influence of self-stress on the behavior of tensegrity-like real
structure. MATEC Web Conf. 2017, 117, 00079. [CrossRef]
3. Gilewski, W.
Kłosowska, J.
Obara, P. Parametric analysis of some tensegrity structures. MATEC Web Conf.
2019, 262, 10003. [CrossRef]
4. Obara, P. Analysis of orthotropic tensegrity plate strips using a continuum two-dimensional model.
MATEC Web Conf. 2019, 262, 10010. [CrossRef]
5. Obara, P. Application of linear six-parameter shell theory to the analysis of orthotropic tensegrity plate-like
structures. J. Theor. App. Mech. 2019, 57, 167–178. [CrossRef]
6. Emmerich, D.G. Construction de Reseaux Autotendants. French Patent 1,377,290, 28 September 1964.
7. Fuller, R.B. Tensile-Integrity Structures. U.S. Patent 3,063,521, 13 November 1962.
8. Snelson, K. Continuous Tension, Discontinuous Compression Structures. U.S. Patent 3,169,611, 16 February 1965.
9. Estrada, G.
Bungartz, H.-J.
Mohrdieck, C. Numerical form-finding of 2D tensegrity structures. In Proceedings
of the 5th International Conference on Computation of Shell and Spatial Structures, Salzburg, Austria,
1–4 June 2005.
10. Skelton, R.E.
de Oliveira, M.C. Tensegrity Systems
Springer: London, UK, 2009.
11. Chen, Y.
Feng, J. Initial prestress distribution and natural vibration analysis of tensegrity structures based
on group theory. Int. J. Struct. Stab. Dyn. 2012, 12. [CrossRef]
12. Zhang, L.-Y.
Li, Y.
Cao, Y.-P.
Feng, X.-Q. Stiffness matrix based form-finding method of tensegrity structures.
Eng. Struct. 2014, 58, 36–48. [CrossRef]
13. Zhang, Q.
Zhang, D.
Dobah, Y.
Scarpa, F.
Fernando Fraternali, F.
Skelton, R. Tensegrity cell mechanical
metamaterial with metal rubber. Appl. Phys. Lett. 2018, 113, 031906. [CrossRef]
14. Motro, R. Tensegrity. Structural Systems for the Future
Kogan Page: London, UK, 2003.
15. Wang, B.B. Free-Standing Tension Structures. From Tensegrity Systems to Cable-Strut System
CRC Press: New York,
NY, USA, 2004.
16. Ali, N.
Rhode-Barbarigos, L.
Smith, I. Analysis of clustered tensegrity structures using a modified dynamic
relaxation algorithm. Int. J. Solids Struct. 2011, 48, 637–664.
17. Zhang, L.
Gao, Q.
Liu, Y.
Zhang, H. An efficient finite element formulation for nonlinear analysis of
clustered tensegrity. Eng. Comput. 2016, 33, 252–273. [CrossRef]
18. Feron, J.
Boucher, L.
Denoël, V.
Latteur, P. Optimization of Footbridges Composed of Prismatic Tensegrity
Modules. J. Bridge Eng. 2019, 24, 04019112. [CrossRef]
19. Kono, Y.
Kunieda, H. Tensegrity grids transformed from double-layer space grids. In Conceptual Design of
Structures, Proceedings of the International Symposium, Stuttgart, Germany, 7–11 October 1996
IASS: Stuttgart,
Germany, 1996
pp. 293–300.
20. Gómez-Jáuregui, V.
Arias, R.
Otero, C.
Manchado, C. Novel Technique for Obtaining Double-Layer
Tensegrity Grids. Int. J. Solids Struct. 2012, 27, 155–166. [CrossRef]
21. Olejnikova, T. Double Layer Tensegrity Grids. Acta Polytech. Hung. 2012, 9, 95–106.
22. Wang, Y.
Xian, X. Prestress Design of Tensegrity Structures Using Semidefinite Programming. Adv. Civ. Eng.
2019, 2019, 1–9. [CrossRef]
23. Faroughi, S.
Lee, J. Geometrical nonlinear analysis of tensegrity based on a co-rotational method.
Adv. Struct. Eng. 2014, 17, 41–51. [CrossRef]
24. Sulaiman, S.
Parthasarathi, N.L.
Geetha, B.
Satyanarayanan, K.S. The Performance of Half-Cuboctahedron
Grid Tensegrity Systems in Roof Structures. Indian, J. Sci. Technol. 2016, 9, 1–6. [CrossRef]
25. Wang, B.B. Cable-strut systems: Part I—Tensegrity. J. Constr. Steel Res. 1998, 45, 281–289. [CrossRef]
26. Wang, B.B. Realizing Cable-Strut Systems. Int. J. Architect. Techn. 2012, 42, 42–53.
27. Hanaor, A. Double-layer tensegrity grids: Static load response. II—Experimental study. J. Struct. Eng.
1991, 117, 1675–1684. [CrossRef]
28. Hanaor, A. Aspects of design of double-layer tensegrity domes. Int. J. Space Struct. 1992, 7, 101–113.
[CrossRef]
Appl. Sci. 2020, 10, 7042 17 of 18
29. Hanaor, A. Double-layer tensegrity grids as deployable structures. Int. J. Space Struct. 1993, 8, 135–145.
[CrossRef]
30. Hanaor, A. Geometrically rigid double-layer tensegrity grids. Int. J. Space Struct. 1994, 9, 227–238.
31. Hanaor, A.
Liao, M.K. Double-Layer Tensegrity Grids: Static Load Response. Part I: Analytical Study.
J. Struct. Eng. 1991, 117, 1660–1674. [CrossRef]
32. Motro, R. Tensegrity Systems and Geodesic Domes. Int. J. Space Struct. 1990, 5, 341–351. [CrossRef]
33. Raducanu, V.
Motro, R. New tensegrity grids. In Proceedings of the International Symposium on Theory,
Design and Realization of Shell and Spatial Structures, Nagoya, Japan, 9–13 October 2001
pp. 320–321.
34. Raducanu, V. Architecture et système constructif: Cas des systèmes de tenségrité. Ph.D. Thesis,
Montpellier University, Montpellier, France, 2001.
35. Averseng, J. Mise en œuvre et contrôle des systèmes de tenségrité. Ph.D. Thesis, Université Montpellier,
Montpellier, France, 2004.
36. Averseng, J.
Jamin, F.
Quirant, J. Système de tenségrité déployable et modulaire pour le développement de
l’accessibilité. In Proceedings of the Rencontres Universitaires de Génie Civil, Nantes, France, 22–24 May 2017.
37. Averseng, J.
Jamin, F.
Quirant, J. Les systèmes de tenségrité déployables: Application à l’accessibilité
de la baignade en mer. In Proceedings of the Rencontres Universitaires de Génie Civil, Bayonne, France,
26–29 May 2015.
38. Papantoniou, A. Parametric models of tensegrity structures with double curvature. ArchiDOCT 2017, 5, 63–76.
39. Gilewski, W.
Al Sabouni-Zawadzka, A. On orthotropic properties of tensegrity structures. Procedia Eng.
2016, 153, 887–894.
40. Gilewski, W.
Al Sabouni-Zawadzka, A. Smart tensegrity plate structures in communication engineering
(in Polish). Logistyka 2014, 6, 1390–1399.
41. Gilewski, W.
Al Sabouni-Zawadzka, A. Smart Metamaterial Based on the Simplex Tensegrity Pattern.
Materials 2018, 11, 673.
42. Fest, E.
Shea, K.
Domer, B.
Smith, I.F.C. Adjustable Tensegrity Structures. J. Struct. Eng. 2003, 129, 515–526.
[CrossRef]
43. Fest, E.
Shea, K.
Smith, I.F.C. Active tensegrity structure. J. Struct. Eng. 2004, 130, 1454–1465. [CrossRef]
44. Crawfordt, L. Transgender Architectonics: The Shape of Change in Modernist Space
Routledge: London, UK, 2015.
45. Gilewski, W.
Kłosowska, J.
Obara, P. Verification of Tensegrity Properties of Kono Structure and Blur
Building. Procedia Eng. 2016, 153, 173–179. [CrossRef]
46. Blur Building. Available online: https://dsrny.com/project/blur-building (accessed on 5 September 2020).
47. Liapi, K.A.
Kim, J. Tensegrity Structures of Helical Shape: A Parametric Approach. In Proceedings
of the Conference on Computation: The New Realm of Architectural Design, Istanbul, Turkey,
16–19 September 2009
pp. 53–58.
48. Falk, A. Architectural and structural development of plate tensegrity. In Proceedings of the International
Association for Shell and Spatial Structures 2006 Symposium, Beijing, China, 16–19 October 2006.
49. Liapi, K.
Kim, J. A Parametric Approach to the Design of a Tensegrity Vaulted Dome for an Ephemeral
Structure for the 2004 Olympics. In Proceedings of the the 2003 Annual Conference of the Association for
Computer Aided Design in Architecture, Indianapolis, IN, USA, 24–27 October 2003
pp. 301–309.
50. Bathe, K.J. Finite Element Procedures in Engineering Analysis
Prentice Hall: New York, NY, USA, 1996.
51. Zienkiewicz, O.C.
Taylor, R.L. The Finite Element Method: The Basis
Elsevier Butterworth-Heinemann:
London, UK, 2000
Volume 1.
52. Gilewski, W.
Kasprzak, A. Introduction to mechanics of tensegrity modules. In Theoretical Foundation of Civil
Engineering. Mechanics of Structures and Materials
Jemioło, S., Lutomirski, S., Eds.
OWPW: Warsaw, Poland,
2012
Volume 1, pp. 83–94.
53. Calladine, C.R. Buckminster Fuller’s “tensegrity” structures and clerk Maxwell’s rules for the construction
of stiff frames. Int. J. Solids Struct. 1978, 14, 161–172. [CrossRef]
54. Calladine, C.R. Modal stiffnesses of a pretensioned cable net. Int. J. Solids Struct. 1982, 18, 829–846. [CrossRef]
55. Pellegrino, S.
Calladine, C.R. Matrix analysis of statically and kinematically indeterminate frameworks.
Int. J. Solids Struct. 1986, 22, 409–428. [CrossRef]
56. Pellegrino, S. Analysis of prestressed mechanisms. Int. J. Solids Struct. 1990, 26, 1329–1350. [CrossRef]
57. Calladine, C.R.
Pellegrino, S. First order infinitesimal mechanisms. Int. J. Solids Struct. 1991, 27, 505–515.
[CrossRef]
Appl. Sci. 2020, 10, 7042 18 of 18
58. Obara, P.
Kłosowska, J.
Gilewski, W. Truth and myths about 2D tensegrity trusses. Appl. Sci. 2019, 9, 179.
[CrossRef]
59. Gilewski, W.
Kłosowska, J.
Obara, P. Form finding of tensegrity structures via Singular Value
Decomposition of compability matrix. In Advances in Mechanics: Theoretical, Computational and Interdisciplinary
Issues, Proceedings of the 21st International Conference on Computer Methods in Mechanics, Gdansk, Poland,
8–11 September 2015
CRC Press: Boca Raton, FL, USA, 2015
pp. 191–195.
60. Golub, G.
Kahan, W. Calculating the singular values and pseudo-inverse of a matrix. J. SIAM Numer. Anal.
Ser. B 1965, 2, 205–224. [CrossRef]
61. Klema, V.C. The singular value decomposition: It’s computation and some applications. IEEE Trans. Autom.
Contr. 1980, 25, 164–176. [CrossRef]
62. Leon, S.J. Linear Algebra with Applications
Macmillan: New York, NY, USA, 1994.
63. Long, C. Visualization of matrix singular value decomposition. Math. Mag. 1983, 56, 161–167. [CrossRef]
64. Mc Guire, W.
Gallagher, R.H. Matrix Structural Analysis
Wiley: New York, NY, USA, 1979.
65. Stewart, G.W. Matrix Algorithms: Basic Decompositions
SIAM: Philadelphia, PA, USA, 1998.
66. Strang, G. Introduction to Linear Algebra
Wellesley-Cambridge Press: Wellesley, MA, USA, 1993.
67. Gilewski, W.
Kłosowska, J.
Obara, P. Application of singular value decomposition for qualitative analysis of
truss and tensegrity structures. ACTA Sci. Polon. Ser. Archit. 2015, 14, 3–20.
68. Pellegrino, S. Structural computations with the singular value decomposition of the equilibrium matrix.
Int. J. Solids Struct. 1993, 30, 3025–3035. [CrossRef]
69. Rahami, H.
Kaveh, A.
Ardalan Asl, M.
Mirghaderi, S.R. Analysis of near-regular structures with node
irregularity using SVD of equilibrium matrix. Int. J. Civ. Eng. 2013, 11, 226–239.
70. Obara, P. Dynamic and Dynamic Stability of Tensegrity Structures
Wydawnictwo Politechniki Swi ˛etokrzyskiej: ´
Kielce, Poland, 2019. (In Polish)
71. Kasprzak, A. Assessment of the possibility of using tensegrity in bridge structures. Ph.D. Thesis,
Warsaw University of Technology, Warsaw, Poland, 2014. (In Polish).
72. Kebiche, K.
Kazi-Aoual, M.N.
Motro, R. Geometrical non-linear analysis of tensegrity systems. Eng. Struct.
1999, 21, 864–876. [CrossRef]
73. Tran, H.C.
Lee, J. Initial self-stress design of tensegrity grid structures. Comput. Struct. 2010, 88, 558–566.
[CrossRef]
74. Oliveto, N.D.
Sivaselvan, M.V. Dynamic analysis of tensegrity structures using a complementary framework.
Comput. Struct. 2011, 89, 2471–2483. [CrossRef]
75. Shekastehband, B.
Abedi, K.
Dianat, N.
Chenaghlou, M.R. Experimental and numerical studies on the
collapse behavior of tensegrity systems considering cable rupture and strut collapse with snap-through.
Int. J. Nonlin. Mech. 2012, 47, 751–768. [CrossRef]