Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[100240] Artykuł:

Relationship between selected pollution indicators of stormwater from urban catchments

(Zależności pomiędzy wybranymi wskaźnikami zanieczyszczenia wód opadowych ze zlewni miejskich)
Czasopismo: Desalination and Water Treatment   Tom: 199, Strony: 473-485
ISSN:  1944-3986
Opublikowano: Wrzesień 2020
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Katarzyna Górska orcid logo WiŚGiEKatedra Technologii Wody i ŚciekówNiespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka1716.67.00  
Jarosław Górski orcid logo WiŚGiEKatedra Geotechniki, Geomatyki i Gospodarki Odpadami*Takzaliczony do "N"Inżynieria środowiska, górnictwo i energetyka1716.6725.00  
Łukasz Bąk orcid logo WiŚGiEKatedra Geotechniki, Geomatyki i Gospodarki Odpadami*Niezaliczony do "N"Inżynieria środowiska, górnictwo i energetyka1716.6725.00  
Aleksandra Sałata orcid logo WiŚGiEKatedra Technologii Wody i ŚciekówNiezaliczony do "N"Inżynieria środowiska, górnictwo i energetyka1716.6725.00  
Joanna Muszyńska orcid logo WiŚGiEKatedra Technologii Wody i ŚciekówNiespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka1716.67.00  
Jarosław Gawdzik orcid logo WiŚGiEKatedra Technologii Wody i ŚciekówNiezaliczony do "N"Inżynieria środowiska, górnictwo i energetyka1716.6725.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

Stormwater  Heavy metals  Total suspended solids  Principal component analysis  Urban catchment 



Abstract:

The article presents the results of studies on stormwater quality in two urban catchments located in Kielce, differing in the area and land use. Precipitation water samples were taken in stormwater drainage during runoff events in order to determine concentrations of the following heavy metals (HM): Cd, Cu, Cr, Ni, Pb, Zn, Co, Mn, Fe, as well as the concentration of total suspended solids (TSS) and total organic carbon (TOC). Completed analyses proved that maximum TSS and TOC concentrations were higher in the Jesionowa stormwater treatment plant (SWTP) catchment (10,621 and 71.6 mg dm–3, respectively) compared to the Witosa SWTP catchment (627 and 21.9 mg dm–3, respectively). The analysis of the values of mean concentrations of HMs (the ANOVA test) shows that a substantially higher mean value of Cu concentration (0.133 mg dm–3) was found only for the Jesionowa SWTP. For the sake of comparison, in stormwater flowing from the catchment of the Witosa SWTP, this value was 0.029 mg dm–3. The lack of statistically significant differences between the mean values of the indices of concern may reveal similarities between factors that determine deposition processes and pollutant wash-out in the catchments examined. The modified contamination index (mCd), calculated in the study, allows a statement that for both catchments, stormwater is very highly contaminated with respect to HMs. That is confirmed by the enrichment factors, that attribute the category extremely severe enrichment or severe enrichment for Cd (Witosa/Jesionowa), severe enrichment for Zn (Witosa) and moderately severe enrichment for Pb, Ni and Cr (both facilities). The principal component analysis was applied to assess the correlation between the analyzed pollution indices. For the Jesionowa catchment, the occurrence of strong positive relationships was found between Ni, Co, Mn, Cu and Zn. As regards the other catchment, a single strongly correlated group of HMs (Cu, Pb, Zn, Co, Mn, Fe) and TSS (r = 0.65–0.94) was observed. That may indicate a major TSS role in the transport of the pollutants examined, whereas the rate of their wash-out depends on the hydrological conditions prevailing in the catchment (precipitation intensity).



B   I   B   L   I   O   G   R   A   F   I   A
1] A. Królikowski, K. Garbarczyk, J. Gwoździej-Mazur, A. Butarewicz, Sediments Formed in Stormwater Sewer Facilities, Monograph 35, Polish Academy of Sciences, Lublin, 2005 (in Polish).
[2] I. Gnecco, C. Berretta, L.G. Lanza, P. La Barbera, Storm water pollution in the urban environment of Genoa, Italy, Atmos. Res., 77 (2005) 60–73.
[3] J. Soller, J. Stephenson, K. Olivieri, J. Downing, A.W. Olivieri, Evaluation of seasonal scale first flush pollutant loading and implications for urban runoff management, J. Environ. Manage., 76 (2005) 309–318.
[4] J.H. Lee, K.W. Bang, Characterization of urban stormwater runoff, Water Res., 34 (2000) 1773–1780.
[5] J.H. Lee, S.L. Lau, M. Kayhanian, M.K. Stenstrom, Seasonal first flush phenomenon of urban stormwater discharges, Water Res., 38 (2004) 4153–4163.
[6] J.J. Sansalone, S.G. Buchberger, Partitioning and first flush of metals in urban roadway storm water, J. Environ. Eng., 123 (1997) 134–143.
[7] G. Mangani, A. Berloni, F. Bellucci, F. Tatano, M. Maione, Evaluation of the pollutant content in road runoff first flush waters, Water Air Soil Pollut., 160 (2005) 213–228.
[8] L.D. Sabin, J.H. Lim, K.D. Stolzenbach, K.C. Schiff, Contribution of trace metals from atmospheric deposition to stormwater runoff in a small impervious urban catchment, Water Res., 39 (2005) 3929–3937.
[9] D. Wicke, T.A. Cochrane, A. O’Sullivan, Build-up dynamics of heavy metals deposited on impermeable urban surfaces, J. Environ. Manage., 113 (2012) 347–354.
[10] Ł. Bąk, J. Górski, K. Górska, B. Szeląg, Suspended solids and heavy metals content of selected rainwater waves in an urban catchment area: a case study, Ochr. Srod., 34 (2012) 49–52 (in Polish).
[11] M. Widomski, A. Musz, D. Gajuk, G. Łagód, Numerical modeling in quantitative and qualitative analysis of storm sewage system extension, Ecol. Chem. Eng. A, 19 (2012) 471–481.
[12] K. Górska, M. Sikorski, J. Górski, Occurrence of heavy metals in rain wastewater on example of urban catchment in Kielce, Ecol. Chem. Eng. A, 20 (2013) 961–974.
[13] J. Zobrist, S.R. Müller, A. Ammann, T.D. Bucheli, V. Mottier, M. Ochs, R. Schoenenberger, J. Eugster, M. Boller, Quality of roof runoff for groundwater infiltration, Water Res., 34 (2000) 1455–1462.
[14] A. Taebi, R.L. Droste, Pollution loads in urban runoff and sanitary wastewater, Sci. Total Environ., 327 (2004) 175–184.
[15] P. Soonthornnonda, E.R. Christensen, Source apportionment of pollutants and flows of combined sewer wastewater, Water Res., 42 (2008) 1989–1998.
[16] J. Gasperi, M.C. Gromaire, M. Kafi, R. Moilleron, G. Chebbo, Contributions of wastewater, runoff and sewer deposit erosion to wet weather pollutant loads in combined sewer systems, Water Res., 44 (2010) 5875–5886.
[17] U.M. Joshi, R. Balasubramanian, Characteristics and environmental mobility of trace elements in urban runoff, Chemosphere, 80 (2010) 310–318.
[18] P. Mahbub, A. Goonetilleke, G.A. Ayoko, P. Egodawatta, T. Yigitcanlar, Analysis of build-up of heavy metals and volatile organics on urban roads in Gold Coast, Australia, Water Sci. Technol., 63 (2011) 2077–2085.
[19] M.K. Stenstrom, M. Kayhanian, First Flush Phenomenon Characterization, Report to the California Department of Transportation, Division of Environmental Analysis, Sacramento, 2005.
[20] J. Górski, B. Szeląg, Ł. Bąk, The application of SWMM software for the evaluation of stormwater treatment plant operation, Woda Środ Obsz Wiej, 16 (2016) 17–35 (in Polish).
[21] PN-EN ISO 10523:2012, Water Quality, Determination pH Value (in Polish).
[22] PN-EN ISO 11885:2009, Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) (in Polish).
[23] PN-EN 872:2007, Water Quality – Determination of Suspended Solids – Method by Filtration Through Glass Fiber Filters (in Polish).
[24] PN-EN 1484: 1999, Water analysis Guidelines for the Determination of Total Organic Carbon (TOC) and Dissolved Organic Carbon (DOC) (in Polish).
[25] B. Backman, D. Bodis, P. Lahermo, S. Rajpant, T. Tarvainen, Application of ground water contamination index in Finland and Slovakia, Environ. Geol., 36 (1997) 55–64.
[26] L. Håkanson, Ecological risk index for aquatic pollution control: a sedimentological approach, Water Res., 14 (1980) 975–1001.
[27] K.K. Pobi, S. Satpati, S. Dutta, S. Nayek, R.N. Saha, S. Gupta, Sources evaluation and ecological risk assessment of heavy metals accumulated within a natural stream of Durgapur industrial zone, India, by using multivariate analysis and pollution indices, Appl. Water Sci., 9 (2019) 58.
[28] G.M.S. Abrahim, R.J. Parker, Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand, Environ. Monit. Assess., 136 (2008) 227–238.
[29] W.H. Zoller, E.S. Gladney, R.A. Duce, Atmospheric concentrations and sources of trace metals at the south pole, Science, 183 (1974) 198–20.
[30] C. Reimann, P. de Caritat, Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys vs. enrichment factors, Sci. Total Environ., 337 (2005) 91–107.
[31] J.L. Cheng, Z. Shi, Y.W. Zhu, Assessment and mapping of environmental quality in agricultural soils of Zhejiang Province, China, J. Environ. Sci., 19 (2007) 50–54.
[32] G. Sakson, A. Brzezińska, M. Zawilski, Prospects for reduction of the impact of wastewater discharge from Urban areas on surface water quality in view of legal regulations, Ochr. Środ., 39 (2017) 27–38 (in Polish).
[33] J. Gasperi, M. Kafi-Benyahia, C. Lorgeoux, R. Moilleron, M.C. Gromaire, G. Chebbo, Wastewater quality and pollutant loads in combined sewers during dry weather periods, Urban Water J., 5 (2008) 305–314.
[34] S. Zgheib, R. Moilleron, G. Chebbo, Priority pollutants in urban stormwater: part 1 – case of separate storm sewers, Water Res., 46 (2012) 6683–6692.
[35] A. Djukić, B. Lekić, V. Rajaković-Ognjanović, D. Veljović, T. Vulić, M. Djolić, Z. Naunovic, J. Despotović, D. Prodanović, Further insight into the mechanism of heavy metals partitioning in stormwater runoff, J. Environ. Manage., 168 (2016) 104–110.
[36] J. Järveläinen, N. Sillanpää, H. Koivusalo, Land-use based stormwater pollutant load estimation and monitoring system design, Urban Water J., 14 (2017) 223–236.
[37] H. Gan, M. Zhuo, D. Li, Y. Zhou, Quality characterization and impact assessment of highway runoff in urban and rural area of Guangzhou, China, Environ. Monit. Assess., 140 (2008) 147–159.
[38] R. Valte, Santa Monica In-Line Storm Drain Runoff Infiltration System Project: Final Report, City of Santa Monica, PublicWorks, Civil Engineering 2014. Available at: https://www.smgov.net/departments/publicworks/civeng.aspx
[39] M. Valtanen, N. Sillanpää, H. Setälä, The effects of urbanization on runoff pollutant concentrations, loadings and their seasonal patterns under cold climate, Water Air Soil Pollut., 225 (2014) 1–6.
[40] A. Stanisz, Popular Statistics Course with the Use of STATISTICA PL Software on the Medical Examples, StatSoft, Kraków, 2007 (in Polish).
[41] A. Goonetilleke, E. Thomas, S. Ginn, D. Gilbert, Understanding the role of land use in urban stormwater quality management, J. Environ. Manage., 74 (2005) 31–42.
[42] J. Huang, P. Du, C. Ao, M. Ho, M. Lei, Z. Wang, Multivariate analysis for stormwater quality characteristics identification from different urban surface types in Macau, Bull. Environ. Contam. Toxicol., 79 (2007) 650–654.
[43] K. Adachi, Y. Tainosho, Characterization of heavy metal particles embedded in tire dust, Environ. Int., 30 (2004) 1009–1017.
[44] J. Królikowska, A. Królikowski, Precipitation Water, Drainage, Management, Pre-Treatment and Use, Seidel-Przywecki, Piaseczno, 2012 (in Polish).
[45] I. Bojakowska, D. Lech, J. Jaroszyńska, Heavy metals in sediments of the Służew stream in Warsaw (Poland), Górnictwo i Geologia, 7 (2012) 71–83.
[46] H. Sawicka-Siarkiewicz, Reducing pollution in surface runoffs from roads: technology assessment and selection, Inst. Environ. Prot., Warsaw, 2003 (in Polish).
[47] O. Al-Khashman, Determination of metal accumulation in deposited street dusts in Amman, Jordan, Environ. Geochem. Health, 29 (2007) 1–10.
[48] O. Al-Khashman, The investigation of metal concentrations in street dust samples in Aqaba city, Jordan, Environ. Geochem. Health, 29 (2007) 197–207.
[49] E.R. Mckenzie, J.E. Money, P.G. Green, T.M. Young, Metals associated with stormwater-relevant brake and tire samples, Sci. Total Environ., 407 (2009) 5855–5860.
[50] M. Legret, C. Pagotto, Heavy metal deposition and soil pollution along two major rural highways, Environ. Technol., 27 (2006) 247–254.
[51] M. Guney, T.T. Onay, N.K. Copty, Impact of overland traffic on heavy metal levels in highway dust and soils of Istanbul, Turkey, Environ. Monit. Assess., 164 (2010) 101–110.
[52] Z. Polkowska, J. Namieśnik, Road and roof runoff waters as a source of pollution in a big urban agglomeration (Gdańsk, Poland), Ecol. Chem. Eng. S, 15 (2008) 375–385.
[53] H. Zhao, C. Yin, M. Chen, W. Wang, Risk assessment of heavy metals in street dust particles to a stream network, Soil Sediment Contam., 18 (2009) 173–183.
[54] N. Sezgin, H.K. Ozcan, G. Demir, S. Nemlioglu, C. Bayat, Determination of heavy metal concentrations in street dust in Istanbul E-5 Highway, Environ. Int., 29 (2003) 979–985.
[55] L. Ferreira-Baptista, E. Migiel, Geochemistry and risk assessment of street dust in Luanda, Angola: a tropical urban environment, Atmos. Environ., 39 (2005) 4501–4512.
[56] S. Witczak, J. Kania, E. Kmiecik, Guidebook on Selected Physical and Chemical Indicators of Groundwater Contamination and Methods of Their Determination, Biblioteka Monitoringu Środowiska, Warsaw, Poland, 2013 (in Polish).