Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[100120] Artykuł:

Sediments from stormwater drainage system as sorbents of organic pollutants

(Osady z kanalizacji deszczowej jako sorbenty zanieczyszczeń organicznych)
Czasopismo: Desalination and Water Treatment   Tom: 199, Strony: 179-187
ISSN:  1944-3986
Opublikowano: Maj 2020
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Aleksandra Sałata orcid logo WiŚGiEKatedra Technologii Wody i ŚciekówTakzaliczony do "N"Inżynieria środowiska, górnictwo i energetyka1716.6725.00  
Łukasz Bąk orcid logo WiŚGiEKatedra Geotechniki, Geomatyki i Gospodarki Odpadami*Niezaliczony do "N"Inżynieria środowiska, górnictwo i energetyka1716.6725.00  
Joanna Muszyńska orcid logo WiŚGiEKatedra Technologii Wody i ŚciekówNiespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka1716.67.00  
Jarosław Górski orcid logo WiŚGiEKatedra Geotechniki, Geomatyki i Gospodarki Odpadami*Niezaliczony do "N"Inżynieria środowiska, górnictwo i energetyka1716.6725.00  
Katarzyna Górska orcid logo WiŚGiEKatedra Technologii Wody i ŚciekówNiespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka1716.67.00  
Jarosław Gawdzik orcid logo WiŚGiEKatedra Technologii Wody i ŚciekówNiezaliczony do "N"Inżynieria środowiska, górnictwo i energetyka1716.6725.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


DOI LogoDOI    
Keywords:

Sediments  Persistent organic pollutants  Sorption of contaminants  Mineral composition 



Abstract:

Natural sorbents which are sediments formed in the aquatic environment play a key role in the deposition
and circulation of organic compounds derived from natural and anthropogenic sources. In this
paper, the qualitative composition of sediments from the urban stormwater drainage system was
determined and their sorption capacity with respect to selected organic substances was evaluated.
The material was subjected to physicochemical analyzes including pH value, dry residue, mineral
and organic matter content, particle size distribution, mineral composition, specific surface area, the
ionic composition including cations (Na+, NH4
+, Ca2+, Mg2+, Li+, and K+) and anions (Cl–, Br–, F–, SO4
2–,
PO4
3–, NO3
–, and NO2
–) and the sum of sixteen polycyclic aromatic hydrocarbons (SPAHs) including
naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene,
pyrene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene,
dibenzo[ah]anthracene, benzo[ghi]perylene and indeno[1,2,3-cd]pyrene. The sediments accumulated
in the stormwater sewer system cause problems that are related not only to the system operation
but also to the hazard they may pose when delivered to the receiver. Because of their properties,
the sediments are characterized by a high affinity for accumulating and storing toxic pollutants in
their structure, such as heavy metals and also organic compounds (PAHs). When the sediment structure
is disturbed, or the physicochemical conditions are altered, pollutants may be released and they
may migrate to the environment. A hazard of this kind may be encountered when the stormwater
sewer system is cleaned, or when settlers and separators in the treatment facility overflow. After
conducting a number of tests it turned out these sediments may pose a potential threat to the environment
due to their properties. In the case of sediments that have already have in their structure
chemical contamination, it was still possible sorption, also the sorption capacity of the material is
not fully used. This means that not only the organic matter of the sediment matrix but also the mineral
parts are responsible for the sorption of organic pollutants. Therefore, to determine the bond
strength of chemical micropollutants with the matter forming sediment, and to properly assess the
degree of contamination should be taken into consideration to examine their sorption capacity.



B   I   B   L   I   O   G   R   A   F   I   A
[1] S. Boehler, R. Strecker, P. Heinrich, E. Prochazka, G.L. Northcott,
J.M. Ataria, F.D.L. Leusch, T. Braunbeck, L.A. Tremblay,
Assessment of urban stream sediment pollutants entering
estuaries using chemical analysis and multiple bioassays to
characterise biological activities, Sci. Total Environ., 593–594
(2017) 498–507.
[2] G. Tixier, M. Lafont, L. Grapentine, Q. Rochfort, J. Marsalek,
Ecological risk assessment of urban stormwater ponds: literature
review and proposal of a new conceptual approach providing
ecological quality goals and the associated bioassessment tools,
Ecol. Indic., 11 (2011) 1497–1506.
[3] M. Walaszek, P. Bois, J. Laurent, E. Lenormand, A. Wanko,
Micropollutants removal and storage efficiencies in urban
stormwater constructed wetland, Sci. Total Environ., 645 (2018)
854–864.
[4] A. Baun, E. Eriksson, A. Ledin, P.S. Mikkelsen, A methodology
for ranking and hazard identification of xenobiotic organic
compounds in urban stormwater, Sci. Total Environ., 370 (2006)
29–38.
[5] M.G. Faram, K.O. Iwugo, R.Y.G. Andoh, Characteristics of
urban run-off derived sediments captured by proprietary flowthrough
stormwater interceptors, Water Sci. Technol., 56 (2007)
21–27.
[6] M.O. Gessner, R. Hinkelmann, G. Nützmann, M. Jekel,
G. Singer, J. Lewandowski, T. Nehls, M. Barjenbruch, Urban
Water interfaces, J. Hydrol., 514 (2014) 226–232.
[7] X.Y. Yuan, L.J. Zhang, J.Z. Li, C. Wang, J.F. Ji, Sediment
properties and heavy metal pollution assessment in the river,
estuary and lake environments of a fluvial plain, China,
CATENA, 119 (2014) 52–60.
[8] A. El-Mufleh, B. Béchet, V. Ruban, M. Legret, B. Clozel,
S. Barraud, C. Gonzalez-Merchan, J.-P. Bedell, C. Delolme,
Review on physical and chemical characterizations of
contaminated sediments from urban stormwater infiltration
basins within the framework of the French observatory for
urban hydrology (SOERE URBIS), Environ. Sci. Pollut. Res. Int.,
21 (2014) 5329–5346.
[9] M. Tobiszewski, J. Namieśnik, PAH diagnostic ratios for the
identification of pollution emission sources, Environ. Pollut.,
162 (2012) 110–119.
[10] M. Tsapakis, E.G. Stephanou, Occurrence of gaseous and
particulate polycyclic aromatic hydrocarbons in the urban
atmosphere: study of sources and ambient temperature effect
on the gas/particle concentration and distribution, Environ.
Pollut., 133 (2005) 147–156.
[11] EU Commission (2000) Directive 2000/60/EC of the European
Parliament and of the Council, of 23 October 2000, Establishing
a Framework for Community Action in the Field of Water
Policy, Official Journal of the European Economics L 327/1,
22.12.2000.
[12] ATSDR (Agency for Toxic Substances and Disease Registry)
Polycyclic Aromatic Hydrocarbons, US Department of Health
and Human Services, Public Health Service, Atlanta, GA, USA,
1995.
[13] A. Valentyne, K. Crawford, T. Cook, P.D. Mathewson, Polycyclic
aromatic hydrocarbon contamination and source profiling in
watersheds serving three small Wisconsin, USA Cities, Sci. Total
Environ., 627 (2018) 1453–1463.
[14] B. Kumar, V.K. Verma, C.S. Sharma, A.B. Akolkar, Estimation
of toxicity equivalency and probabilistic health risk on lifetime
daily intake of polycyclic aromatic hydrocarbons from urban
residential soils, Hum. Ecol. Risk Assess., 21 (2015) 434–444.
AQ2
A. Sałata et al. / Desalination and Water Treatment (2020) 1–9 9
[15] PN-EN ISO 5667–15:2009, Water Quality. Sampling. Part 15:
Guidance on the Preservation and Handling of Sludge and
Sediment Samples (in Polish).
[16] PN-EN 12176:2004, Characterization of Sludge. Determination
of pH Value (in Polish).
[17] PN-EN 15934:2013–02, Sewage Sludge, Treated Bio-Waste,
Soil and Waste. Determination of Dry Matter by Determination
of Dry Residue Content or Water Content (in Polish).
[18] PN-EN 15169:2011, Characterization of Waste. Determination
of Loss on Ignition of Waste, Sludges and Sediments (in Polish).
[19] PN-EN 15527:2008, Characterization of Waste. Determination
of Polycyclic Aromatic Hydrocarbons (PAH) in Waste Using
Gas Chromatography Mass Spectrometry (GC/MS) (in Polish).
[20] PN-EN ISO 14911:2002, Water Quality. Determination of Li+, Na+,
NH4
+, K+, Mn2+, Ca2+, Mg2+, Sr2+ and Ba2+ by Ion Chromatography.
Method for Water and Wastewater (in Polish).
[21] PN-EN ISO 10304–1:2009, Water Quality. Determination of
Dissolved Anions by Ion Chromatography. Part 1: Determination
of Bromides, Chlorides, Fluorides, Nitrates, Nitrites,
Phosphates and Sulphates (in Polish).
[22] H.Y. Li, L. Liu, M.Y. Li, X.R. Zhang, Effects of pH, temperature,
dissolved oxygen, and flow rate on phosphorus release
processes
at the sediment and water interface in storm
sewer, J. Anal. Methods Chem., 2013 (2013) 104316 1–7, doi:
10.1155/2013/104316.
[23] A. Sałata, L. Dąbek, Sorption of Selected Compounds on
Sediments Derived from Stormwater Treatment Plant, Mineral
Sorbents – Raw Materials, Energy, Environment Protection,
Modern Technologies, AGH University of Science and Technology
Press, 2015, pp. 285–295 (in Polish).
[24] D.D. MacDonald, C.G. Ingersoll, T.A. Berger, Development
and evaluation of consensus-based sediment quality guidelines
for freshwater ecosystems, Arch. Environ. Contam. Toxicol.,
39 (2000) 20–31.
[25] I. Bojakowska, Criteria of evaluation of pollution of aquatic
sediments, Polish Geol. Rev., 49 (2001) 213–218 (in Polish).
[26] A. Sałata, L. Dąbek, Sediments from stormwater drainage
system as sorbents of organic and inorganic pollutants, E3S
Web Conf., 22 (2017) 00152, doi: 10.1051/e3sconf/20172200152.
[27] L. Liu, A. Liu, Y. Li, L.X. Zhang, G.J. Zhang, Y.T. Guan, Polycyclic
aromatic hydrocarbons associated with road deposited solid
and their ecological risk: implications for road stormwater
reuse, Sci. Total Environ., 563–564 (2016) 190–198.
[28] J. Gunawardena, A.M. Ziyath, P. Egodawatta, G.A. Ayoko,
A. Goonetilleke, Influence of traffic characteristics on polycyclic
aromatic hydrocarbon build-up on urban road surfaces, Int. J.
Environ. Sci. Technol., 11 (2014) 2329–2336.
[29] J. Zhang, J.W. Wu, P. Hua, Z.H. Zhao, L. Wu, G.D. Fan, Y. Bai,
T. Kaeseberg, P. Krebs, The influence of land use on source
apportionment and risk assessment of polycyclic aromatic
hydrocarbons in road-deposited sediment, Environ. Pollut.,
229 (2017) 705–714.