Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[67420] Artykuł:

Characterization of the Surface Layer of Mg Enriched with Al and Si by Thermochemical Treatment

Czasopismo: Archives of Foundry Engineering   Tom: 17, Zeszyt: 4, Strony: 195-199
ISSN:  1897-3310
Opublikowano: 2017
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Renata Mola orcid logo WMiBMKatedra Technik Komputerowych i Uzbrojenia**Niezaliczony do "N"Inżynieria mechaniczna3315.00.00  
Elżbieta Stępień Niespoza "N" jednostki33.00.00  
Michał Cieślik WMiBMKatedra Technik Komputerowych i Uzbrojenia**Niespoza "N" jednostkiInżynieria materiałowa3315.00.00  

Grupa MNiSW:  Publikacja w recenzowanym czasopiśmie wymienionym w wykazie ministra MNiSzW (część B)
Punkty MNiSW: 15


DOI LogoDOI     Web of Science LogoYADDA/CEON    
Słowa kluczowe:

magnez wzbogacony  modyfikacja powierzchni  obróbka cieplno-chemiczna  mikrotwardość 


Keywords:

enriched magnesium  surface modification  thermochemical treatment  layer microstructure  microhardness 



Abstract:

The modified surface layers of Mg enriched with Al and Si were fabricated by thermochemical treatment. The substrate material in contact with an Al + 20 wt.% Si powder mixture was heated to 445ºC for 40 or 60 min. The microstructure of the layers was examined by OM and SEM. The chemical composition of the layer and the distribution of elements were determined by energy dispersive X-ray spectroscopy (EDS). The experimental results show that the thickness of the layer is dependent on the heating time. A much thicker layer (1 mm) was obtained when the heating time was 60 min than when it was 40 min (600 μm). Both layers had a non-homogeneous structure. In the area closest to the Mg substrate, a thin zone of a solid solution of Al in Mg was detected. It was followed by a eutectic with Mg17Al12 and a solid solution of Al in Mg. The next zone was a eutectic with agglomerates of Mg2Si phase particles; this three-phase structure was the thickest. Finally, the area closest to the surface was characterized by dendrites of the Mg17Al12 phase. The microhardness of the modified layer increased to 121-236 HV as compared with 33-35 HV reported for the Mg substrate.



B   I   B   L   I   O   G   R   A   F   I   A
[1] Czerwinski, F. (2012). Thermochemical treatment of metals. InTech. DOI:10.5772/51566.
[2] Klimek, L., Krasinski, A. & Kolodziejczyk, L. (2007). Properties of 15HN steel after various thermo-chemical treatments. Arch. Foundry Eng. 7(3), 71-74.
[3] Shigematsu, M., Nakamura, M., Saitou, K. & Shimojima, K. (2000). Surface treatment of AZ91D magnesium alloy by aluminum diffusion coating. J. Mater. Sci. Lett. 19, 473-475.
[4] Zhu, L. & Song, G. (2006). Improved corrosion resistance of AZ91D magnesium alloy by an aluminum-alloyed coating. Surf. Coat. Technol. 200, 2834-2840.
[5] Liu, F., Li, X., Liang, W., Zhao, X. & Zhang, Y. (2009). Effect of temperature on microstructures and properties of aluminized coating on pure magnesium. J. Alloys Compd. 478, 579-585.
[6] Mola, R. & Jagielska-Wiaderek, K. (2014). Formation of Al-enriched surface layers through reaction at the Mg-substrate/Al-powder interface. Surf. Interface Anal. 46, 577-580.
[7] Mola, R. (2015). The properties of Mg protected by Al- and Al/Zn-enriched layers containing intermetallic phases. J. Mater. Res. 30(23), 3682-3691.
[8] Zhang, M.X. & Kelly, P.M. (2002). Surface alloying of AZ91 alloy by diffusion coating. J. Mater. Res. 17(10), 2477-2479.
[9] Ma, Y., Xu, K., Wen, W., He, X. & Liu, P. (2005). The effect of solid diffusion surface alloying on properties of ZM5 magnesium alloy. Surf. Coat. Technol. 190, 165-170.
[10] Hirmke, J., Zhang, M.X. & StJohn, D.H. (2011). Surface alloying of AZ91E alloy by Al-Zn packed powder diffusion coating. Surf. Coat. Technol. 206, 425-433.
[11] Mola, R. (2014). The properties of Al/Zn-enriched surface layer on Mg. Arch. Foundry Eng. 14(3), 45-48.
[12] Mola, R. (2016). The microstructure of alloyed layers formed on Mg by the powder-pack method. METAL 2016: 25th Anniversary International Conference on Metallurgy and Materials, 1492-1497.
[13] Chen, Y., Liu, T.M. Lu, L.W. & Wang, Z.C. (2012). Thermally diffused antimony and zinc coatings on magnesium alloys AZ31. Surf. Eng. 28(5), 382-386.
[14] Wang, H., Yu, B., Wang, W., Ren, G., Liang, W. & Zhang, J. (2014). Improved corrosion resistance of AZ91D magnesium alloy by zinc-yttrium coating. J. Alloys Compd. 582, 457-460.
[15] He M., Liu L., Wu Y., Tang Z. & Hu W. (2009). Improvement of the properties of AZ91D magnesium alloy by treatment with molten AlCl3-NaCl salt to form an Mg-Al intermetallic surface layer, J Coat. Technol. Res. 6(30), 407-411.
[16] Zhong, C., He, M.F., Liu, L., Chen, Y.J., Shen, B., Wu, Y.T., Deng, Y.D. & Hu, W.B. (2010). Formation of an aluminum-alloyed coating on AZ91D magnesium alloy in molten salts at lower temperature. Surf. Coat. Technol. 205, 2412-2418.
[17] He, M., Liu, L., Wu, Y., Zhong, C., Hu, W. & Pan, D. (2013). Kinetics and mechanism of multilayer Mg-Al intermetallic compound coating formation of magnesium alloy by AlCl3-NaCl molten salt bath treatment, J. Alloys Compd. 551, 389-398.
[18] Phase Equilibria Crystallographic and Thermodynamic Data of Binary Alloys. (1998). Landolt-Börstein, New Series IV, 5, Springer.
[19] Light Metal Ternary Systems: Phase Diagrams, Crystallographic and Thermodynamic Data. (2005). Landolt-Börstein, Series Volume 11A3, Springer.
[20] Raghavan, V. (2007). Al-Mg-Si (Aluminum-Magnesium-Silicon). J. Phase Equil. 28(2), 189-191.
[21] Galun, R., Weisheit, A. & Mordike, B.L. (1998). Improving the surface properties of magnesium by laser alloying. Corros. Rev., 16(1-2), 53-74.
[22] Gao, Y., Wang, C., Lin, Q., Liu, H. & Yao, M. (2006). Broad-beam laser cladding of Al-Si alloy coating on AZ91HP magnesium alloy. Surf. Coat. Technol. 201, 2701-2706.
[23] Volovitch, V., Masse, J.E., Fabre, A., Barrallier, L. & Saikaly, W. (2008). Microstructure and corrosion resistance of magnesium alloy ZE41 with laser surface cladding by Al-Si powder. Surf. Coat. Technol. 202, 4901-4914.
[24] Qian, M., Li, D. & Jin, Ch. (2008). Microstructure and corrosion characteristic of laser-alloyed magnesium alloy AZ91D with Al-Si powder. Sci. Technol. Adv. Mater. 9, 1-7.
[25] Yang, Y. & Wu, H. (2009). Improving the wear resistance of AZ91D magnesium alloys by laser cladding with Al-Si powders. Mater. Lett. 63, 19-21.
[26] Carcel, B., Sampedro, J., Ruescas, A. & Toneu, X. (2011). Corrosion and wear resistance improvement of magnesium alloys by laser cladding with Al-Si. Physics Procedia 12A, 353-363.