Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[66080] Artykuł:

DESIGN OF THE THERMAL INSULATION POROUS MATERIALS BASED ON TECHNOGENIC MINERAL FILLERS

Czasopismo: Eastern - European Journal of Enterprise Technologies   Tom: 5, Zeszyt: 12(89), Strony: 1-8
ISSN:  1729-3774
Opublikowano: 2017
Liczba arkuszy wydawniczych:  0.50
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Anatoliy Pavlenko orcid logo WiŚGiEKatedra Fizyki Budowli i Energii Odnawialnej*Niezaliczony do "N"Inżynieria środowiska, górnictwo i energetyka501.00.50  
Hanna Koshlak Niespoza "N" jednostki50.00.00  

Grupa MNiSW:  Recenzowana publikacja w języku innym niż polski w zagranicznym czasopiśmie spoza listy
Punkty MNiSW: 1


Pełny tekstPełny tekst     DOI LogoDOI    
Słowa kluczowe:

fly ash  soluble glass  alkaline silicate composite thermal insulation materials  thermal bloating 


Keywords:

fly ash  soluble glass  alkaline silicate composite thermal insulation materials  thermal bloating 



Streszczenie:

We report results of research into processes of formation of porous structure by the method of thermal bloating of the gel­like mixture of raw materials. Regularities of the course of physical­chemical transformations are considered in the material when it is heated; as a result, we established the initial water content in the raw mixture, optimal for the formation of xerogel, and the residual water content in gel, sufficient for effective bloating. We proposed the optimized composition of the raw mixture that employs maximally permissible amount of ash as a mineral filler; the thermal modes of bloating are studied. Based on the data obtained, a new technology for the production of porous thermal insulation materials is created. New porous thermal insulation materials were obtained using soluble glass as a binding component; foaming agent; regulator of hardening rate of the mixture. The basic thermophysical properties were determined.




Abstract:

We report results of research into processes of formation of porous structure by the method of thermal bloating of the gel­like mixture of raw materials. Regularities of the course of physical­chemical transformations are considered in the material when it is heated; as a result, we established the initial water content in the raw mixture, optimal for the formation of xerogel, and the residual water content in gel, sufficient for effective bloating. We proposed the optimized composition of the raw mixture that employs maximally permissible amount of ash as a mineral filler; the thermal modes of bloating are studied. Based on the data obtained, a new technology for the production of porous thermal insulation materials is created. New porous thermal insulation materials were obtained using soluble glass as a binding component; foaming agent; regulator of hardening rate of the mixture. The basic thermophysical properties were determined.



B   I   B   L   I   O   G   R   A   F   I   A
Pavlenko, A., Koshlak, Н., Usenko, B. (2014). Peculiarities of controlled forming of porous structure. Metallurgical and Mining Industry, 6, 50–55.

Malyavsky, N. I. (2003). Shchelochno-silikatnyie utepliteli. Svoistva i khimicheskiye osnovy proizvodstva [Alkaline silicate heat insulants. Properties and chemical bases of production]. Rossiyskiy khimicheskiy zhurnal, XLVII (4), 39–45.

Leonovich, S. N., Shulkin, G. L., Belanovich, A. L. (2012). Osobennosti polucheniya shchelochno-silikatnyh teploizolyacionnyh materialov. Nauka i tekhnika, 6, 45–50.

Figovskiy, O. L., Kudryavcev, P. G. (2014). Zhidkoe steklo i vodnye rastvory silikatov kak perspektivnaya osnova tekhnologicheskih processov polucheniya novyh nanokompozitnyh materialov. Elektronnyy nauchnyy zhurnal: Inzhenerniy vestnik Dona, 29 (2), 55–97.

Fei, S., Wang, L., Liu, J., Zeng, M. (2007). Effect of heat treatment on silica aerogels prepared via ambient drying. Journal of Materials Science and Technology, 23 (3), 402–406.

Knunyanc, I. L. (Ed.) (1990). Himicheskaya enciklopediya. Vol. 2. Moscow: Soveckaya enciklopediya, 671.

Pavlenko, A., Koshlak, Н. (2015). Design of processes of thermal bloating of silicates. Metallurgical and Mining Industry, 1, 118−122.

Pavlenko, A., Koshlak, Н. (2015). Production of porous material with projected thermophysical characteristics. Metallurgical and Mining Industry, 1, 123–127.

Okuyama, K., Kim, J.-H., Mori, S., Iida, Y. (2006). Boiling propagation of water on a smooth film heater surface. International Journal of Heat and Mass Transfer, 49 (13-14), 2207–2214. doi: 10.1016/j.ijheatmasstransfer.2006.01.001

Pariy, V. I., Nikonova, N. S., Bazhanov, E. A. (2000). Pat. No. 2161142 RF. Sposob polucheniya teploizolyacionno-konstrukcionnogo materiala na osnove vspuchennogo vermikulita. C04B28/24, C04B111:20. No. 2000114219/03
declareted: 06.06.2000
published: 27.12.2000.

Artemenko, N. F., Golubev, V. I., Bondar', S. D., Valeev, R. F., Malofeev, S. V., Shevelev, V. N., Mubarakshin, M. M., Mardamshin, G. K. (1995). Pat. No. 2097362 RF. Syr'evaya smes' dlya polucheniya penosilikatnogo teploizolyacionnogo materiala. MKI S04V 38/00. No. 95108038/03
declareted: 17.05.1995
published: 27.11.1997.

Radina, T. N., Bormotina, E. A. (2000). Pat. No. 2177921 RF. Sposob polucheniya granulirovannogo teploizolyacionnogo materiala. MPK S04V28/26. No. 2000108899/03
declareted: 10.04.2000
published: 10.01.2002, Bul. No. 29, 6.

Radina, T. N., Ivanov, M. Yu. (2004). Pat. No. 2220928 RF. Syr'evaya smes' i sposob polucheniya granulirovannogo teploizolyacionnogo materiala. MPK S 04 V 28 / 26. No. 2004128504/03
declareted: 27.09.2004
published: 20.04.2006, Bul. No. 11, 5.

Kudyakov, A. I., Radina, T. N., Ivanov, M. Yu. (2003). Pat. No. 2246462 RF. Syr'evaya smes' i sposob polucheniya granulirovannogo teploizolyacionnogo materiala. MPK S 04V28 / 26. No. 2003124577/03
declareted: 06.08.2003
published: 20.02.2005, Bul. No. 5, 5.

Brykov, S. I., Busygin, V. M., Valeev, R. G., Gaysin, L. G., Galimov, K. S., Zakirov, F. A. et. al. (1998). Pat. No. 2134668 RF. Sposob izgotovleniya poristyh silikatnyh materialov. MPK C04B28/26, C04B111:20. No. 98109881/03
declareted: 29.05.1998
published: 20.08.1999, Bul. No. 5, 3.

Lotov, V. A., Rudik, K. A. (2004). Pat. No. 2268248 RF. Vspenennyy material i sposob ego izgotovleniya. MPK C04B 38/00. No. 2004120692/03
declareted: 06.07.2004
published: 20.01.2006.

Malyavskiy, N. I., Pokid'ko, B. V. (2006). Tekhnologii polucheniya vodostoykogo shchelochno-silikatnogo uteplitelya iz zhidkogo stekla, modificirovannogo alyuminiem. Krovel'nye i izolyacionnye materialy, 4, 60–62.

Eom, J.-H., Kim, Y.-W., Raju, S. (2013). Processing and properties of macroporous silicon carbide ceramics: A review. Journal of Asian Ceramic Societies, 1 (3), 220–242. doi: 10.1016/j.jascer.2013.07.003

Shaw, S., Henderson, C. M. B., Komanschek, B. U. (2000). Dehydration/recrystallization mechanisms, energetics, and kinetics of hydrated calcium silicate minerals: an in situ TGA/DSC and synchrotron radiation SAXS/WAXS study. Chemical Geology, 167 (1-2), 141–159. doi: 10.1016/s0009-2541(99)00206-5

Wang, X., Jin, Y., Wang, Z., Nie, Y., Huang, Q., Wang, Q. (2009). Development of lightweight aggregate from dry sewage sludge and coal ash. Waste Management, 29 (4), 1330–1335. doi: 10.1016/j.wasman.2008.09.006

Volland, S., Brötz, J. (2015). Lightweight aggregates produced from sand sludge and zeolitic rocks. Construction and Building Materials, 85, 22–29. doi: 10.1016/j.conbuildmat.2015.03.018

Koutný, O., Opravil, T. (2016). The Basics of Low Volume Weight Aerated Autoclaved Concrete Preparation. Materials Science Forum, 851, 69–74. doi: 10.4028/www.scientific.net/msf.851.69

Wenger, M. D., DePhillips, P., Bracewell, D. G. (2008). A Microscale Yeast Cell Disruption Technique for Integrated Process Development Strategies. Biotechnology Progress, 24 (3), 606–614. doi: 10.1021/bp070359s

Leong, T. S. H., Wooster, T. J., Kentish, S. E., Ashokkumar, M. (2009). Minimising oil droplet size using ultrasonic emulsification. Ultrasonics Sonochemistry, 16 (6), 721–727. doi: 10.1016/j.ultsonch.2009.02.008

Malyavskiy, N. I., Zvereva, V. V. (2015). Kal'ciy-silikatnye otverditeli zhidkogo stekla dlya polucheniya vodostoykih shchelochnosilikatnyh utepliteley. Internet-vestnik VolgGASU, 2 (38). Available at: http://vestnik.vgasu.ru/attachments/5MalyavskiiZvereva-2015_2_38_.pdf

Behkish, A., Lemoine, R., Oukaci, R., Morsi, B. I. (2006). Novel correlations for gas holdup in large-scale slurry bubble column reactors operating under elevated pressures and temperatures. Chemical Engineering Journal, 115 (3), 157–171. doi: 10.1016/j.cej.2005.10.006