Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[59270] Artykuł:

Microstructure of the Bonding Zone Between AZ91 and AlSi17 Formed by Compound Casting

Czasopismo: Archives of Foundry Engineering   Tom: 17, Zeszyt: 1, Strony: 202-206
ISSN:  1897-3310
Opublikowano: Styczeń 2017
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Renata Mola orcid logo WMiBMKatedra Technik Komputerowych i Uzbrojenia**Niezaliczony do "N"Inżynieria mechaniczna335.005.00  
Tomasz Bucki orcid logo WMiBMKatedra Technik Komputerowych i Uzbrojenia**Niespoza "N" jednostkiInżynieria mechaniczna335.00.00  
Andrzej Dziadoń orcid logo WMiBMKatedra Technik Komputerowych i Uzbrojenia**Takzaliczony do "N"Inżynieria mechaniczna335.005.00  

Grupa MNiSW:  Publikacja w recenzowanym czasopiśmie wymienionym w wykazie ministra MNiSzW (część B)
Punkty MNiSW: 15


DOI LogoDOI     Web of Science LogoYADDA/CEON    
Słowa kluczowe:

proces odlewania  łączenie  stop magnezu  stop aluminium  faza intermetaliczna  mikrostruktura 


Keywords:

Compound casting process  Joining  Magnesium alloys  Aluminum alloys  Intermetallic phases  Microstructure 



Abstract:

This paper discusses the joining of AZ91 magnesium alloy with AlSi17 aluminium alloy by compound casting. Molten AZ91 was cast at 650oC onto a solid AlSi17 insert placed in a steel mould under normal atmospheric conditions. Before casting, the mould with the insert inside was heated up to about 370oC. The bonding zone forming between the two alloys as a result of diffusion had a multiphase structure and a thickness of about 200 μm. The microstructure and composition of the bonding zone were analysed using optical microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The results indicate that the bonding zone adjacent to the AlSi17 alloy was composed of an Al3Mg2 intermetallic phase with not fully consumed primary Si particles, surrounded by a rim of an Mg2Si intermetallic phase and fine Mg2Si particles. The bonding zone near the AZ91 alloy was composed of a eutectic (an Mg17Al12 intermetallic phase and a solid solution of Al and Si in Mg). It was also found that the compound casting process slightly affected the AZ91alloy microstructure; a thin layer adjacent to the bonding zone of the alloy was enriched with aluminium.



B   I   B   L   I   O   G   R   A   F   I   A
[1] Zhang, H.T. & Song, J.Q. (2011). Microstructure evolution of aluminum/magnesium lap joints welded using MIG process with zinc foil as interlayer. Mater. Lett. 65, 3292-3294.
[2] Borrisutthekul, R., Miyashita, Y. & Mutoh, Y. (2005). Dissimilar material laser welding between magnesium alloy AZ31B and aluminum alloy A5052-O. Sci. Tech. Adv. Mater. 6(2), 199-204.
[3] Morishige, T., Kawaguchi, A., Tsujikawa, M., Hino, M., Hirata, T. & Higashi, K. (2008). Dissimilar welding of Al and Mg alloys by FSW. Mater. Trans. 49(5), 1129-1131.
[4] Li, Y., Liu, P., Wang, J. & Ma, H. (2008). XRD and SEM analysis near the diffusion bonding interface of Mg/Al dissimilar materials. Vacuum. 82, 15-19.
[5] Dziadoń, A., Mola, R. & Błaż, L. (2011). Formation of layered Mg-eutectic composite using diffusional process at the Mg-Al interface. Arch. of Metall. and Mater. 56(3), 677-684.
[6] Zhang, X.P., Yang, T.H., Castagne, S. & Wang, J.T. (2011). Microstructure
bonding strength and thickness ratio of Al/Mg/Al alloy laminated composites prepared by hot rolling. Mater. Sci. Eng. A 528, 1954-1960.
[7] Wierzba, A., Mróz, S., Szota, P., Stefanik, A. & Mola, R. (2015). The influence of the asymetric ARB process on the properties of Al-Mg-Al multi-layer sheets. Arch. of Metall. and Mater. 60, 2821-2825.
[8] Mróz, S., Stradomski, G., Dyja, H. & Galka, A. (2015). Using the explosive cladding method for production of Mg-Al. bimetallic bars. Arch. Civ. Mech. Eng. 15, 317-323.
[9] Bae, J.H., Prasada Rao, A.K., Kim, K.H. & Kim, N.J. (2011). Cladding of Mg alloy with Al. by twin-roll casting, Scripta Mater. 64, 836-839.
[10] Avci, A., Ilkaya, N., Simsir, M. & Akademir, A. (2009). Mechanical and microstructural properties of low-carbon steel-plate reinforced gray cast iron. J. Mater. Process. Technol. 209, 1410-1416.
[11] Tenerowicz, S., Suchoń, J. & Cholewa, M. (2010). Studies of the transition zone in steel-chromium cast iron bimetallic casting. Archives of Foundry Engineering. 10(1), 199-204.
[12] Wróbel, T. & Szajnar, J. (2015). Bimetallic casting: ferritic stainless steel-grey cast iron. Arch. of Metall. and Mater. 60(3), 2361-2365.
[13] Wróbel, T., Cholewa, M. & Tenerowicz, S. (2011). Bimetallic layered castings alloy steel – carbon cast steel. Archives of Foundry Engineering. 11(1), 105-108.
[14] Choe. K.H., Park, K.S., Kang, B.H., Cho, G.S., Kim, K.Y., Lee, K.W., Kim, M.H., Ikenaga, A. & Koroyasu, S. (2008). Study of the interface between steel insert and aluminum casting in EPC. J. Mater. Sci. Technol. 24, 60-64.
[15] Szymczak, T. (2011). The influence of selected technological factors on the quality of bimetallic castings alloy steel-silumin. Archives of Foundry Engineering. 11(3), 215-226.
[16] Zare, G.R., Divandari, M., Arabi, H. (2013). Investigation on interface of Al/Cu couples in compound casting. Mater. Sci. Technol. 29, 190-196.
[17] Papis, K.J.M., Loeffler, J.F. & Uggowitzer, P.J. (2009). Light metal compound casting. Sci. China Ser. E-Tech. Sci. 52(1), 46-51.
[18] Hajjari, E., Divandari, M., Razavi, S.H., Emami, S.M., Homma, T. & Kamado, S. (2011). Dissimilar joining of Al/Mg light metals by compound casting process. J. Mater. Sci. 46, 6491-6499.
[19] Hajjari, E., Divandari, M., Razavi, S.H., Homma, T. & Kamado, S. (2012). Intermetallic compounds and antiphase domains in Al/Mg compound casting. Intermetallics. 23, 182-186.
[20] Emami, S.M., Divandari, M., Arabi, H. & Hajjari, E. (2013). Effect of melt-to-solid insert volume ratio on Mg/Al dissimilar metals bonding. J. Mater. Eng. Perform. 22(1), 123-130.
[21] Mola, R., Bucki, T., Dziadoń, A. (2016). Formation of Al.-alloyed layer on magnesium with use of casting techniques. Archives of Foundry Engineering. 16(1), 112-116.
[22] Okamoto, H. (1998) Al-Mg (Aluminum-Magnesium). J. Phase Equilibria. 19, 598.
[23] Feufel, H., Gödecke, T., Lukas, H.L. & Sommer, F. (1997). Investigation of the Al-Mg-Si system by experiments and thermodynamic calculations. J. Alloys Compd. 247, 31-42.
[24] Dziadoń, A., Mola, R. & Błaż, L. (2016). The microstructure of the surface layer of magnesium laser alloyed with aluminum and silicon. Mater. Charact. 118, 505-513.
[25] Asano, K., & Yoneda, H. (2008). Formation of in situ composite layer on magnesium alloy surface by casting process. Materials Transactions. 49(10), 2394-2398.