Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[42170] Artykuł:

Evaporation of the Leidenfrost droplet located on a thin metal foil

(Odparowania kropli Leidenfrosta położonej na cienkiej stalowej folii)
Czasopismo: Procedia Engineering   Tom: 157, Zeszyt: 157, Strony: 131-138
ISSN:  1877-7058
Wydawca:  ELSEVIER SCIENCE BV, SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
Opublikowano: 2016
Seria wydawnicza:  Procedia Engineering
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Sylwia Wciślik orcid logoWiŚGiEKatedra Sieci i Instalacji Sanitarnych507.50  
Tadeusz Orzechowski orcid logoWiŚGiEKatedra Sieci i Instalacji Sanitarnych507.50  

Grupa MNiSW:  Materiały z konferencji międzynarodowej (zarejestrowane w Web of Science)
Punkty MNiSW: 15
Klasyfikacja Web of Science: Proceedings Paper


DOI LogoDOI     Web of Science Logo Web of Science    
Keywords:

evaporative cooling  Leidenfrost droplet evaporation  numerical study 



Abstract:

For the thin metal foil cooling that is not very intense, the temperature change in thickness can be neglected when the Biot number Bi



B   I   B   L   I   O   G   R   A   F   I   A
1. Kouhikamali R., Hesami H., Ghavamian A., 2012, Convective heat transfer in a mixture of cooling water and superheated steam. International Journal of Thermal Sciences, 60, pp. 205-211.
2. Suna W., Jia J., Lib Y., Xieb X., 2007, Dispersion and settling characteristics of evaporating droplets in ventilated room. Building and Environment, 42, pp. 1011–1017.
3. Zigan L., Schmitz I., Flügel A., Wensing M., Leipertz A., 2011, Structure of evaporating single- and multicomponent fuel sprays for 2nd generation gasoline direct injection. Fuel, 90, pp. 348–363.
4. Kyoung Hoon Kim, Hyung-Jong Ko, Kyoungjin Kim, Horacio Perez-Blanco, 2012, Analysis of water droplet evaporation in a gas turbine inlet fogging process. Applied Thermal Engineering, 33-34, pp. 62-69.
5. Xu X.Y, Zeng M, Zhu H.B, Wang Q.W, Yan X, 2013, Numerical simulation and comparison of turbulent heat transfer in supercritical and subcritical water. Progress in Computational Fluid Dynamics, 13 (3/4), pp.141-151.
6. Lemouari M, Boumaza M, Kaabi A, 2009, Experimental analysis of heat and mass transfer phenomena in a direct contact evaporative cooling tower. Energy Conversion and Management, 50, pp. 1610–1617.
7. Yu H-Z., 2012, Froude-modeling-based general scaling relationships for fire suppression by water sprays. Fire Safety Journal, 47, pp. 1–7.
8. Cho H.K., Choi K.Y., Cho S., Song C-H., 2011, Experimental observation of the droplet size change across a wet grid spacer in a 6×6 rod kundle. Nuclear Engineering and Design, 241, pp. 4649–4656.
9. Kim T, Oh D-W., Do K.H., Park J.M., Lee J., 2015, Effect of initial temperature of a cylindrical steel block on heat transfer characteristics of staggered array jets during water jet quenching. Heat transfer engineering, 36 (12), pp. 1037-1045.
10. Wciślik W., 2014, Numerical determination of critical void nucleation strain in the Gurson-Tvergaard-Needleman porous material model for low stress state triaxiality ratio. Metal 2014: 23rd International Conference on Metallurgy and Materials, Conference materials, pp. 794-800.
11. Duursmaa G., Kennedya R., Sefianeab K., Yu Y., Accepted author version posted online: 05 Nov 2015, Leidenfrost droplets on microstructured surfaces, Heat Transfer Engineering, DOI: 10.1080/01457632.2015. 1112610.
12. Paul, G, Kumar Das, P, Manna, I, 2015, Droplet oscillation and pattern formation during Leidenfrost phenomenon. Experimental Thermal and Fluid Science, 60, pp. 346–353.
13. Alam S.S., Nizam A. A, Aziz T., 2014, Single and multicomponent droplet models for spray applications. American Journal of Energy Engineering, 2(5), pp.108-126.
14. Burton J.C., Sharpe A.L., Veen van der R.C.A., Franco A., Nagel S.R., 2012, The geometry of the vapor layer under a Leidenfrost drop. Physical Review Letters, 109, pp. 074301-1 – 4.
15. Gradeck M., Ouattara A., Maillet D., Gardin P., Lebouché M., 2011, Heat transfer associated to a hot surface quenched by a jet of oil-in-water emulsion. Experimental Thermal and Fluid Science, 35, pp. 841–847.
16. Bertola V., 2009, An experimental study of bouncing Leidenfrost drops: Comparison between Newtonian and viscoelastic liquids. International Journal of Heat and Mass Transfer, 52, pp. 1786–1793.
17. Shahriari A., Wurz J., Bahadur V., 2014, Heat transfer enhancement accompanying Leidenfrost state suppression at ultrahigh temperatures. Langmuir, 30 (40), pp. 12074–12081.
18. Wciślik S., Analysis of heat transfer under unsteady droplet evaporation conditions (in Polish), 2013, Wydawnictwo Politechniki Świętokrzyskiej, Kielce, number of pages: 136.
19. Orzechowski T., Wciślik S., 2013, Experimental analysis of the drop film boiling at ambient pressure. Energy Conversion and Management, 76, pp. 918-924.
20. Orzechowski T., Wciślik S., 2014, Analysis of D-2-law in case of Leidenfrost drop evaporation. Experimental Thermal and Fluid Science, 59, pp. 230-237.
21. Incropera, F.P, et.al., Fundamentals of heat and mass transfer, 7th ed., John Wiley & Sons, USA 2011.
22. Orzechowski T., Wciślik S., 2014, Instantaneous heat transfer for large drops levitating over a hot surface. International Journal of Heat and Mass Transfer, 73, pp. 110-117.
23. Kruczek T., 2015, Use of infrared camera in energy diagnostics of the objects placed in open air space in particular at non-isothermal sky. Energy, 91, pp. 35–47.
24. Kruczek T., 2015, Conditions for the use of infrared camera diagnostics in energy auditing of the objects exposed to open air space at isothermal sky. Archives of Thermodynamics, 36(1), pp. 67–82.
25. Orzechowski T., Wciślik (Zwierzchowska) S., 2011, Heat transfer coefficient components of the large droplets of water in the range of film boiling, In Proceedings of the 9th European Conference of Young Research and Scientific Workers, Transcom, Zilina - Slovak Republic, Copyright by University of Žilina, pp. 137-140.
26.Turkyilmazoglu M., 2014, Effective Computation of Solutions for Nonlinear Heat Transfer Problems in Fins. Journal of Heat Transfer, 136 (9), 091901 pp. 1-6.
27. Orzechowski T., 2015, A 2D inverse problem of predicting boiling heat transfer in a long fin. Heat and Mass Transfer DOI 10.1007/s00231-015-1733-x, (published online 09 Dec. 2015).
28.Hożejowska S., Piasecka M., Equalizing calculus in Trefftz method for solving two-dimensional temperature field of FC-72 flowing along the minichannel. Heat and Mass Transfer, 50 (8), pp. 1053-1063.