Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[37764] Artykuł:

Pool boiling for extended surfaces with narrow tunnels - Visualization and a simplified model

Czasopismo: Experimental Thermal and Fluid Science   Tom: 38, Zeszyt: Complete, Strony: 149-164
ISSN:  0894-1777
Wydawca:  ELSEVIER SCIENCE INC, 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
Opublikowano: Kwiecień 2012
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Robert Pastuszko orcid logoWMiBMKatedra Mechaniki**10030.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 30
Klasyfikacja Web of Science: Article


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science Logo Web of Science     Web of Science LogoYADDA/CEON    
Keywords:

Pool boiling  Visualization  Tunnel structure  Enhanced surface 



Abstract:

The paper presents experimental investigations and theoretical analysis of boiling heat transfer for a system of connected narrow horizontal and vertical tunnels. These extended surfaces, named narrow tunnel structures (NTSs), can be used to cool electronic elements. The experiments were carried out with water, ethanol and R-123 at atmospheric pressure. The tunnel external covers were manufactured out of 0.1mm thick perforated copper foil (hole diameters 0.3, 0.4 and 0.5mm), sintered with the mini-fins formed on the vertical side of 10mm high rectangular fins and the horizontal inter-fin surface. Visualization studies were conducted with a real sample as well as with a transparent structured model of joined narrow tunnels with perforated walls. The visualization investigations aimed to identify nucleation sites and flow patterns, and determine the bubble departure diameter and frequency. On the basis of his previous studies and the existing analytical boiling models, the author proposed a simplified model for narrow tunnel structures. The heat fluxes for evaporation within the tunnels and convection on the external extended surfaces were determined based on the calculated bubble parameters (diameter, nucleation sites density, frequency). The predicted total heat flux, when compared to the experimental results, showed satisfying agreement for boiling water in medium and high heat flux ranges.



B   I   B   L   I   O   G   R   A   F   I   A
1. Y. Chen, M. Groll, R. Mertz, A dynamic model for pool boiling heat transfer on enhanced surfaces with subsurface channels, Proc. 3rd Int. Sym. on Two-Phase Flow Modeling and Experimentation, Pisa, Italy, paper No. pst01, 2004.
2. Chen, Y.& Groll, M.& Mertz, R.& Kulenowic, R., "Visualization and mechanisms of pool boiling of propane, isobutane and their mixtures on enhanced tubes with reentrant channels", Int. J. Heat Mass Transfer, vol. 48, 2005, p.2516-2528
3. Chien, L.-H.& Webb, R.L., "A nucleate boiling model for structured enhanced surfaces", Int. J. Heat Mass Transfer, vol. 41, 1998, p.2183-2195
4. Chien, L.H.& Webb, R.L., "Measurement of bubble dynamics on an enhanced boiling surface", Exp. Therm. Fluid Sci., vol. 16, 1998, p.177-186
5. Chien, L.H.& Webb, R.L., "Visualization of pool boiling on enhanced surfaces", Exp. Therm. Fluid Sci., vol. 16, 1998, p.332-341
6. Das, A.K.& Das, P.K.& Bhattacharyya, S.& Saha, P., "Nucleate boiling heat transfer from a structured surface - Effect of liquid intake", Int. J. Heat Mass Transfer, vol. 50, 2007, p.1577-1591
7. Ghiu, C.-D.& Joshi, Y.K., "Visualisation study of pool boiling from thin confined enhanced structures", Int. J. Heat Mass Transfer, vol. 48, 2005, p.4287-4299
8. Haider, S.I.& Webb, R.L., "A transient microconvection model of nucleate pool boiling", Int. J. Heat Mass Transfer, vol. 40, 1997, p.3675-3688
9. Han, C.-J.& Griffith, P., "The mechanism of heat transfer in nucleate pool boiling - Part II", Int. J. Heat Mass Transfer, vol. 8, 1965, p.905-914
10. Idelchik, I.E., "Handbook of Hydraulic Resistance", 1996
11. Mikic, B.B.& Rohsenow, W.M., "A new correlation of pool boiling data including the effect of heating surface characteristics", J. Heat Transfer, vol. 91, 1969, p.245-250
12. Murthy, S.& Joshi, Y.& Gurrum, S.& Nakayama, W., "Enhanced boiling heat transfer simulation from structured surfaces: Semi-analytical model", Int. J. Heat Mass Transfer, vol. 49, 2006, p.1885-1895
13. Nakayama, W.& Daikoku, T.& Kuwahara, H.& Nakajima, T., "Dynamic model on enhanced boiling heat transfer on porous surfaces. Part I - Experimental investigation", ASME J. Heat Transfer, vol. 102, 1980, p.445-456
14. Nakayama, W.& Daikoku, T.& Kuwahara, H.& Nakajima, T., "Dynamic model on enhanced boiling heat transfer on porous surfaces. Part II - Analytical modeling", ASME J. Heat Transfer, vol. 102, 1980, p.451-456
15. Pastuszko, R., "Boiling heat transfer enhancement in subsurface horizontal and vertical tunnels", Exp. Therm. Fluid Sci., vol. 32, 2008, p.1564-1577
16. R. Pastuszko, Pool boiling visualization for surfaces with narrow tunnels limited by porous structure, in: Proc. 5th European Thermal-Sciences Conference, Eindhoven, the Netherlands, TPF_23, 2008.
17. R. Pastuszko, Semi - analytical model for pool boiling heat transfer from surfaces with narrow tunnels, in: Proc. 5th Int. Conf. on Transport Phenomena in Multiphase Systems, HEAT 2008, June 30-July 3, Białystok, Poland, 2008, pp. 123-130.
18. R. Pastuszko, High speed boiling visualization for fins with subsurface tunnels, in: Proc. 7th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics (ExHFT-7), Krakow, Poland, June 28-July 03, HT-39, 2009.
19. R. Pastuszko, R. Kaniowski, Boiling visualization on vertical fins with tunnel-pore structures, in: Proc. Int. Conf. Exp. Fluid Mech. 2010, Liberec, Czech Republic, 2010, pp. 479-485.
20. Pastuszko, R.& Poniewski, M.E., "Semi-analytical approach to boiling heat fluxes calculation in subsurface horizontal and vertical tunnels", Int. J. Therm. Sci., vol. 47, 2008, p.1169-1183
21. R. Pastuszko, P.J. Mroczek, Boiling visualization for fins with horizontal and vertical subsurface tunnels, in: Proc. 11th Int. Symp. on Heat Transfer and Renewable Sources of Energy, Miedzyzdroje, Poland, 2006, pp. 629-636.
22. Ramaswamy, C.& Joshi, Y.& Nakayama, W.& Johnson, W.B., "High-speed visualization of boiling from an enhanced structure", Int. J. Heat Mass Transfer, vol. 45, 2002, p.4761-4771
23. Ramaswamy, C.& Joshi, Y.& Nakayama, W.& Johnson, W.B., "Semi-analytical model for boiling from enhanced structures", Int. J. Heat Mass Transfer, vol. 46, 2003, p.4257-4269
24. Yu, C.K.& Lu, D.C., "Pool boiling heat transfer on horizontal rectangular fin array in saturated FC-72", Int. J. Heat Mass Transfer, vol. 50, 2007, p.3624-3637
25. Zuber, N., "Nucleate boiling. The region of isolated bubbles and the similarity with natural convection", Int. J. Heat Mass Transfer, vol. 6, 1963, p.53-78