Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[33624] Artykuł:

The influence of geometry of the specimen and material properties on the Q-stress value near the crack tip for SEN(T) specimen

Czasopismo: Acta Mechanica et Automatica   Tom: 5, Zeszyt: 2, Strony: 27-34
ISSN:  1898-4088
Opublikowano: 2011
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Marcin Graba orcid logoWMiBMKatedra Technologii Mechanicznej i Metrologii*1005.00  

Grupa MNiSW:  Publikacja w recenzowanym czasopiśmie wymienionym w wykazie ministra MNiSzW (część B)
Punkty MNiSW: 5


Pełny tekstPełny tekst     Web of Science LogoYADDA/CEON    
Słowa kluczowe:

właściwości materiałów  obciążenie  geometria 


Keywords:

material properties  stress  geometry 



Abstract:

In the paper the short theoretical backgrounds about elastic-plastic fracture mechanics were presented and the O'Dowd-Shih theory was discussed. Using ADINA System program, the values of the Q-stress determined for various elastic-plastic materials for SEN(T) specimen - single edge notched plates in tension - were presented. The influence of kind of the specimen, crack length and material properties (work-hardening exponent and yield stress) on the Q-parameter were tested. The numerical results were approximated by the closed form formulas. Presented in the paper results are complementary of the two papers published in 2007 (Graba, 2007) and in 2010 (Graba, 2010), which show and describe influence of the material properties and crack length for the Q-stress value for SEN(B) and CC(T) specimens respectively. Presented and mentioned papers show such catalogue of the Q-stress value, which may be used in engineering analysis for calculation of the real fracture toughness.



B   I   B   L   I   O   G   R   A   F   I   A
1. ADINA 8.4.1 (2006a), ADINA: User Interface Command Reference Manual - Volume I: ADINA Solids & Structures Model Definition, Report ARD 06-2, ADINA R&D, Inc.
2. ADINA 8.4.1 (2006b), ADINA: Theory and Modeling Guide - Volume I: ADINA, Report ARD 06-7, ADINA R&D, Inc.
3. FITNET (2006), FITNET Report, (European Fitness-forservice Network), Edited by M. Kocak, S. Webster, J. J. Janosch, R. A.Ainsworth, R.Koers, Contract No. G1RT-CT-2001-05071.
4. Graba M. (2007), Wpływ stałych materiałowych na rozkład naprężeń Q przed wierzchołkiem pęknięcia w materiałach sprężysto - plastycznych, IV MSMZMiK - Augustów 2007, materiały konferencyjne, 109-114
5. Graba M. (2010), Wpływ stałych materiałowych na rozkład naprężeń Q przed wierzchołkiem pęknięcia w materiałach sprężysto-plastycznych dla płyty z centralną szczeliną poddanej rozciąganiu, Acta Mechanica et Automatica, Vol. 4, No. 2, 54-62.
6. Hutchinson J. W. (1968), Singular Behaviour at the End of a Tensile Crack in a Hardening Material, Journal of the Mechanics and Physics of Solids, 16, 13-31.
7. Kumar V., German M. D., Shih C. F. (1981), An Engineering Approach for Elastic-Plastic Fracture Analysis, EPRI Report NP-1931, Electric Power Research Institute, Palo Alto, CA., 1981.
8. Li Y., Wang Z. (1985), High-Order Asymptotic Field of Tensile Plane-Strain Nonlinear Crack Problems, Scientia Sinica (Series A), Vol. XXIX, No. 9, 941-955.
9. O'
Dowd N. P. (1995), Applications of two parameter approaches in elastic-plastic fracture mechanics, Engineering Fracture Mechanics, Vol. 52, No. 3, 445-465.
10. O'
Dowd N. P., Shih C. F. (1991), Family of Crack-Tip Fields Characterized by a Triaxiality Parameter - I. Structure of Fields, J. Mech. Phys. Solids, Vol. 39, No. 8, -1015.
11. O'
Dowd N. P., Shih C. F. (1992), Family of Crack-Tip Fields Characterized by a Triaxiality Parameter - II. Fracture Applications, J. Mech. Phys. Solids, Vol. 40, No. 5, 939-963.
12. Shih C. F., O'
Dowd N. P., Kirk M. T. (1993), A Framework for Quantifying Crack Tip Constraint, Constraint Effects in Fracture, ASTM STP 1171, E.M. Hackett, K,-H. Schwalbe, R. H. Dodds, Eds., American Society for Testing and Materials, Philadelphia, 2-20.
13. SINTAP (1999), SINTAP: Structural Integrity Assessment Procedures for European Industry. Final Procedure, Brite-Euram Project No BE95-1426 - Rotherham: British Steel.
14. Yang S., Chao Y. J., Sutton M. A. (1993), Higher Order Asymptotic Crack Tip in a Powe -Law Hadening Material, Engineering Fracture Mechanics, Vol. 45, No. 1, 99. 1 - 20.
15. Chao Y. J., Zhu X. K., Kim Y., Lar P. S., Pechersky M. J., Morgan M. J. (2004), Characterization of Crack-Tip Field and Constraint for Bending Specimens under Large-Scale Yielding, International Journal of Fracture, 127, 2004, 283-302.