Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[29254] Artykuł:

Studies of fracture processes in Cr-Mo-V ferritic steel with various types of microstructures

Czasopismo: International Journal of Pressure Vessels and Piping   Tom: 87, Zeszyt: 10, Strony: 575-586
ISSN:  0308-0161
Opublikowano: 2010
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Ihor Dzioba orcid logoWMiBMKatedra Podstaw Konstrukcji Maszyn*339.00  
Mirosław GajewskiWMiBMKatedra Technik Komputerowych i Uzbrojenia**339.00  
Andrzej Neimitz orcid logoWMiBMKatedra Podstaw Konstrukcji Maszyn*339.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 27


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science LogoYADDA/CEON    
Keywords:

Ferritic steel  Microstructure  Fracture mechanisms 



Abstract:

In this paper, the authors report on analysis of the influence of microstructure on ductile and cleavage fracture mechanisms. The question investigated was whether microstructure observations alone can provide sufficient information to predict the possible fracture mechanism or change in fracture mechanism. Four different microstructures of ferritic steel were tested after four different heat treatments. The microstructures examined were ferritic, ferritic-pearlitic, ferritic-bainitic, and tempered martensitic types. It was concluded that the ratio (S C /S 0 ) of the area covered by carbides to the total area of a ferritic grain (measured by taking into account large carbides) is the only possible quantitative measure that can be used to predict cleavage fracture.



B   I   B   L   I   O   G   R   A   F   I   A
1. Wallin, K., "Master curve analysis of the "Euro" fracture toughness dataset", Engineering Fracture Mechanics, vol. 69, 2002, p.451-481
2. Wallin, K.& Nevasmaa, P.& Laukkanen, A.& Planman, T., "Master curve analysis of inhomogeneous ferritic steels", Engineering Fracture Mechanics, vol. 71, 2004, p.2329-2346
3. Gao, X.& Dodds Jr., R.H., "Constraint effects on the ductile-to-brittle transition temperature of ferritic steels: a Weibull stress model", International Journal of Fracture, vol. 102, 2000, p.43-69
4. Ruggieri, C.& Dodds Jr., R.H., "A transferability model for brittle fracture including constraint and ductile tearing effects: a probabilistic approach", International Journal of Fracture, vol. 79, 1996, p.309-340
5. Ruggieri, C.& Dodds Jr., R.H.& Wallin, K., "Constraint effects on reference temperature, T0, for ferritic steels in the transition region", Engineering Fracture Mechanics, vol. 60, 1998, p.19-36
6. Tanguy, B.& Besson, J.& Piques, R.& Pineau, A., "Ductile to brittle transition of an A508 steel characterized by Charpy impact test. Part I: Experimental results", Engineering Fracture Mechanics, vol. 72, 2005, p.49-72
7. Neimitz, A.& Galkiewicz, J., "The analysis of fracture mechanisms of ferritic steels at low temperatures", paper ID JAI102470 available online at:, www.astm.org
8. Neimitz, A.& Gałkiewicz, J.& Dzioba, I., "The ductile to cleavage transition in ferritic Cr-Mo-V steel: a detailed microscopic and numerical analysis", Engineering Fracture Mechanics, vol. 77, 2010, p.2504-2526
9. Goods, S.& Brown, L., "The nucleation of cavities by plastic deformation", Acta Metallurgica, vol. 27, 1979, p.1-15
10. Berdin, C.& Besson, J.& Bugat, S.& Desmorat, R.& Feyel, F.& Forest, S. et al., Besson, J. (Eds.), Local approach to fracture, 2004
11. Beremin, F.M., "Cavity formation from inclusions in ductile fracture of A508 steel", Metallurgical and Materials Transactions A, vol. 12A, 1981, p.723-731
12. Argon, A.& Im, J.& Safoglu, R., "Cavity formation from inclusions in ductile fracture", Metallurgical and Materials Transactions A, vol. 6A, 1975, p.825-837
13. McClintock, F.A., "A criterion for ductile fracture by growth of holes", Journal of Applied Mechanics, vol. 4, 1968, p.363-371
14. Rice, J.R.& Tracey, D.M., "On the ductile enlargement of voids in triaxial stress fields", Journal of the Mechanics and Physics of Solids, vol. 17, 1969, p.201-217
15. Rice, J.R.& Johnson, M.A., Kanninen, M.F. et al. (Eds.), Inelastic behaviour of solids, 1970, p.641
16. Ritchi, R.O.& Knott, J.F.& Rice, J.R., "On the relationship between critical tensile stress and fracture toughness in mild steel", Journal of the Mechanics and Physics of Solids, vol. 21, 1973, p.395-410
17. PN-EN 100002-1+AC1. Metallic materials. Tensile testing. Part 1: Method of test at ambient temperature
1998.
18. ASTM E 1820-05. Standard test method for measurement of fracture toughness.
19. FITNET, Koçak, M.& Webster, S.& Janosh, J.J.& Ainsworth, R.A.& Koers, R. (Eds.), Fitness for service procedure, 2008
20. O'Dowd, N.P.& Shih, C.F., "Family of crack-tip fields characterised by a triaxiality parameter. Structure of fields", Journal of the Mechanics and Physics of Solids, vol. 39, 1991, p.898-1015
21. Hutchinson, J.W., "Singular behaviour at the end of a tensile crack tip in a hardening material", Journal of the Mechanics and Physics of Solids, vol. 16, 1968, p.13-31
22. Rice, J.R.& Rosengren, G.F., "Plane strain deformation near a crack tip in a power-law hardening material", Journal of the Mechanics and Physics of Solids, vol. 16, 1968, p.1-12
23. Broberg, K.B., "Cracks and fracture", 1999
24. Dzioba I. Wpływ struktury materiału na odporność na pękanie stali ferrytycznej. In: Proceedings of 12th Polish conference on fracture, Cracow
2009 [in Polish].