Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[28035] Artykuł:

Application of adjustment calculus to the Trefftz method for calculating temperature field of the boiling liquid flowing in a minichannel

Czasopismo: International Journal of Numerical Methods for Heat & Fluid Flow   Tom: 24, Zeszyt: 4, Strony: 811-824
ISSN:  0961-5539
Wydawca:  EMERALD GROUP PUBLISHING LIMITED, HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND
Opublikowano: 2014
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Sylwia Hożejowska orcid logoWZiMKKatedra Informatyki i Matematyki Stosowanej**4020.00  
Robert Kaniowski orcid logoWMiBMKatedra Mechaniki**4020.00  
Mieczysław Edward PoniewskiPolitechnika Warszawska20.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 20
Klasyfikacja Web of Science: Article


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science Logo Web of Science    
Keywords:

Adjustment calculus  Flow boiling  Liquid crystals  Minichannel  Trefftz method 



Abstract:

Purpose – The purpose of this paper is to focus on the application of the Trefftz method to the calculation of the two-dimensional (2D) temperature field in the boiling refrigerant flow through an asymmetrically heated vertical minichannel with a rectangular cross-section. The considerations were limited to determining the temperature of the continuous phase – liquid for bubbly and bubbly-slug flow. The numerical solution found with the Trefftz methods was compared with the simplified solution. For nucleate boiling, heat transfer coefficient at the heating foil – liquid contact was determined.Design/methodology/approach – The Trefftz method was used to determine 2D temperature distributions for the glass pane, the heating foil and the boiling liquid. The temperature fields were approximated by the sum of the particular solution and the linear combination of suitable Trefftz functions. Coefficients of linear combination were computed using experimental data, including heating foil temperature measurements obtained with the liquid-crystal method and experimentally determined void fraction. The computations were based on the Trefftz method supplemented with the adjustment calculus.Findings – The way of solving direct and inverse problems of heat conduction in solid bodies (isolating glass, heating foil) and in liquids (boiling refrigerant flowing through the minichannel) was presented. For the first time, both 2D temperature fields for the heating foil and the boiling liquid were calculated while simultaneously using the Trefftz method. The known temperature values of the foil and liquid allowed the calculation of the heat transfer coefficient and the heat flux at the heating foil-liquid contact. Adjustment calculus implemented into the Trefftz method was used to smooth the measurement data and to reduce their errors.Practical implications – The approach proposed in the paper can be applied to determining 2D temperature field, heat flux and heat



B   I   B   L   I   O   G   R   A   F   I   A
Bohdal, T.(2000), “Modeling the process of bubble boiling on flows”, Archives of Thermodynamics, 21,
pp.34-75.

Brandt, S. (1999), “Data analysis, statistical and computational methods for scientists and engineers”, Springer Verlag, New York.

Ciałkowski, M.J. and Frąckowiak, A. (2002), “Solution of a stationary 2D inverse heat conduction problem by Trefftz method”, J. of Thermal Science, 11, pp.148-162.

Dupont, V. and Thome, J. R. (2004), “Evaporation in microchannels
influence of the channel diameter on heat transfer”, Proc. 2nd Int. Conf. on Microchannels and Minichannels, Rochester, USA, pp.461-468.

Grysa, K., Hożejowska, S. and Maciejewska, B. (2012), “Compensatory calculus and Trefftz functions applied to local heat transfer coefficient determination in a minichannel”, J. of Theoretical and Applied Mechanics (JTAM), 50, No. 4, pp.1087-1096.

Herrera, I. (2000), “Trefftz method: a general theory”, Numerical Methods for Partial Differential Equations, 16, pp.561-580.

Hożejowska, S. and Hożejowski, L. (2009), “Prediction of local heat transfer coefficient in flow boiling inside a minichannel – Application of equalizing calculus”, Proc. of Int. Conf. on Experimental Fluid Mechanics 2009, Liberec, Czech Republic, pp.56-53.

Hożejowska,S., Piasecka, M. and Poniewski, M.E. (2009), “Boiling heat transfer in vertical minichannels. Liquid crystal experiments and numerical investigations”, Int. J. of Thermal Sciences, 48, pp.1049-1059.

Hożejowska, S. and Poniewski, M.E. (2012a), “Application of adjustment calculus to Trefftz method for calculating two-dimensional temperature field of the boiling liquid flowing in a minichannel”, Proc. of the Numerical Heat Transfer Int. Conf. 2012, eds. A.J. Nowak, R.A. Białecki
RECENT, Silesian University of Technology, Wrocław 2012, Poland, pp.301- 310.

Hożejowska, S, and Poniewski, M.E. (2012b), “Application of the Trefftz method for determining the temperature field of the flowing boiling liquid in a minichannel”, Proc. of 3th Int .Conf. on Contemporary Problems of Thermal Engineering CPOTE, Gliwice 2012, Poland, CD-No. 20.

Kaniowski, R. (2011), “The analysis of two–phase flow in asymmetrically heated minichannels” (in Polish), Ph.D. Thesis, Warsaw University of Technology , Plock Campus.

Kaniowski, R. and Poniewski, M.E. (2011), “Measurement of void fraction distribution and heating surface
local temperature in a rectangular, vertical minichannel heated asymmetrically”, Proc. of 6th Int. Conf.
on Transport Phenomena in Multiphase System, Bialystok, Poland, 2011, pp.263-270.

Piasecka, M. and Maciejewska, B. (2012), “The study of boiling heat transfer in vertically and horizontally oriented rectangular minichannels and the solution to the inverse heat transfer problem with the use of the Beck method and Trefftz functions”, Experimental Thermal and Fluid Science, 38, pp.19-32.

Piasecka, M. and Maciejewska, B. (2013), “Enhanced heating surface application in a minichannel flow and the use of the FEM and Trefftz functions for the solution of inverse heat transfer problem”, Experimental Thermal and Fluid Science, 44, pp.23-33.

Podowski, M.Z, (2008), “Multidimensional modeling of two-phase flow and heat transfer", Int. J. of Numerical Methods for Heat & Fluid Flow, 18 , No.3/4, pp.491-513.

Poniewski, M.E., Piasecka, M. and Hożejowska, S. (2005), “Experimental error analysis and heat polynomial method improvement for boiling heat transfer numerical calculations in minichannels”, Proc. of 3rd Int. Conf. on Microchannels and Minichannels, Toronto, Canada, 2005, CD-ICMM2005-75142.

Poniewski, M.E., Piasecka, M. and Hożejowska, S. (2004), “Experimental evaluation of flow boiling incipience of subcooled fluid in a narrow channel”, Int. J. of Heat and Fluid Flow, 25, pp.159-172.

Qu, W.L. and Mudawar, I. (2003), “Flow boiling heat transfer in two-phase micro-channel heat sinks – II. Annular two-phase flow model”, Int. J. Heat Mass Transfer, 46, pp. 2773–2784.

Szargut, J. (1984), “Adjustment calculus in heat engineering” (in Polish), Ossolineum, Katowice.

Thome, J. R. ( 2004), “Boiling in microchannels: a review of experiment and theory”, Int. J. Heat Fluid Flow, 25, pp.128-139.

Thome, J. R., Dupont, V. and Jacobi, A. M. (2004), “Heat transfer model for evaporation in microchannels. Part I: presentation of model” , Int. J. Heat Fluid Flow, 47, pp.3375-3385.

Thorncroft, G. E., Klausner, J.F. and Mei, R. (1998), “An experimental investigation of bubble growth and detachment in vertical upflow and downflow boiling”, Int. J. Heat Mass Transfer, 41, pp. 3857-3871.

Trefftz, E. (1926), “Ein Gegenstück zum Ritzschen Verfahren”, 2 International Kongressfür Technische Mechanik, Zürich, pp.131-137.

Wang, G., Hao, L. and Cheng, P. (2010), “A four-zone model for saturated flow boiling in a microchannel of rectangular cross-section” , Int. J. Heat and Mass Transfer, 53, pp.3439-3448.

Wróblewski, A. and Zieliński, A.P. (2003), “Survey and applications of special purpose T-complete systems”, Proc. of 2nd MIT Conf. on Computational Fluid and Solid Mechanics, Boston, USA, pp.759-761.

Velidandla, V., Putta, S., Roy, R.P. and Kaira, S.P. (1995), “Velocity field in turbulent subcooled boiling flow”, Proc. of 30th National Heat Transfer Conference, Portland, USA, Vol. HTD 314.