Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[24523] Artykuł:

Some factors affecting supercooling and the equilibrium freezing point in soil-water systems

Czasopismo: Cold Regions Science and Technology   Tom: 59, Zeszyt: 1, Strony: 25-33
ISSN:  0165-232X
Wydawca:  ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
Opublikowano: Pażdziernik 2009
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Tomasz Kozłowski orcid logoWiŚGiEKatedra Geotechniki i Inżynierii Wodnej *****10024.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 24
Klasyfikacja Web of Science: Article


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science Logo Web of Science     Web of Science LogoYADDA/CEON    
Keywords:

Soil freezing  Supercooling  Freezing point  DSC  Phase changes  Clay minerals  Exchangeable cations 



Abstract:

For six monomineral, homoionic clayey soils, the temperature of spontaneous nucleation T sn and the equilibrium freezing point T f were determined by use of the Differential Scanning Calorimetry (DSC) technique. The temperature of spontaneous nucleation T sn was determined on the cooling run, as the initial temperature of the observed exothermic peak. The temperature of equilibrium freezing (or melting) T f was interpreted as the initial temperature of the last non-zero thermal impulse in the diagram of real thermal impulses distribution q(T) obtained on warming. The supercooling Ψ was calculated as the difference between T f and T sn . The obtained results testify the strong dependency of the equilibrium freezing point T f on the water content w. It has been proved that T f can be expressed as a power function of the water content w and the plasticity limit w P , with an asymptote at w equal to the unfreezable water content w nf . In contrary, a scatter of results was observed for T sn and Ψ, which could be related to the effect of factors other than the water content. The best fitted model expresses the temperature of non-equilibrium freezing T sn as a function of the water content w, the plastic limit w P and an extensive parameter of the sample, i.e. its mass m, the effect of which proved fully statistically significant. The results give evidence of the strong effect of both soil plasticity and the sample mass on the temperature of spontaneous nucleation and the supercooling. By use of auxiliary empirical function, relating the unfreezable water content w nf to the plastic limit w P , it was possible to calculate such a mass m Ψ =0 of a soil sample, for which the supercooling equals zero. At high water contents the predicted supercooling tends to zero for very large sample masses, from about 10 5 kg in a practically uncohesive soil (w P =1%) to 10 8 kg in an extremely cohesive soil (w P =100%).



B   I   B   L   I   O   G   R   A   F   I   A
1. Akyurt, M.& Zaki, G.& Habeebullah, B., "Freezing phenomena in ice-water systems", Energy Conversion and Management, vol. 43, 2002, p.1773-1789
2. Anderson, D.M., "Ice nucleation and the substrate-ice interface", Nature, vol. 216, 1967, p.563-566
3. Anderson, D.M., "Undercooling, freezing point depression, and ice nucleation of soil water", Israel Journal of Chemistry, vol. 6, 1968, p.349-355
4. Block, W.& Worland, M.R., "Experimental studies of ice nucleation in an Antarctic springtail (Collembola, Isotomidae)", Cryobiology, vol. 42, 2001, p.170-181
5. Bozhenova, A.P., 1953, Pereochlazhdenie vody pri zamerzanii yeyo v pochvo-gruntach. Mat. po lab. issl. merz. gruntov, Sb. 1, 144-156.
6. Chatterji, S., "Aspects of freezing process in porous material-water system
part 2. Freezing and properties of frozen porous materials", Cement and Concrete Research, vol. 29, 1999, p.781-784
7. Fletcher, N.H., "The Chemical Physics of Ice", 1970
8. Franks, F., "Water", 1983
9. Frémond, M.& Gormaz, R.& San Martin, J.A., "A new mathematical model for supercooling", Journal of Mathematical Analysis and Applications, vol. 261, 2001, p.578-603
10. Grenot, C.J.& Garcin, L.& Dao, J.& Hérold, J.P.& Fahys, B.& Tséré-Pagès, H., "How does the European common lizard, Lacerta vivipara, survive the cold of winter?", Comparative Biochemistry and Physiology, Part A, vol. 127, 2000, p.71-80
11. Helmuth, R.A., "Capillary size restrictions on ice formation in hardened cement pastes", IVth Intern. Symp. Chemistry of Cement, vol. II, National Bureau of Standards, Monograph 43, US Department of Commerce, Washington, 1960, p.859-869
12. Jellinek, H.H.G., "Liquid-like (transition) layer on ice", Journal of Colloid and Interface Science, vol. 25, 1967
13. Kivelson, D.& Tarjus, G.& Kivelson, S.A., "A viewpoint, model and theory for supercooled liquids", Progress of Theoretical Physics (Supplement), 1997, p.289-299
14. Kozlowski, T., "Investigation of the supercooling in clayey soils", Frost in Geotechnical Engineering, Technical Research Centre of Finland, VTT 94, vol. vol. I, 1989, p.293-300
15. Kozlowski, T., "A comprehensive method of determining the soil unfrozen water curves
1: application of the term of convolution", Cold Regions Science & Technology, vol. 36, 1-3, 2003, p.71-79
16. Kozlowski, T., "Soil freezing point as obtained on melting", Cold Regions Science & Technology, vol. 38, 2-3, 2004, p.93-101
17. Kozlowski, T., "A semi-empirical model for phase composition of water in clay-water systems", Cold Regions Science & Technology, vol. 49, 2007, p.226-236
18. Low, P.F.& Anderson, D.M.& Hoekstra, P., "Some thermodynamic relationships for soils at or below the freezing point
1, freezing point depression and heat capacity", Water Resources Research, vol. 4, 1968, p.379-394
19. Nagaraj, H.D., "Prediction of engineering properties of fine-grained soils from their index properties", Indian Institute of Science, 2005, http://hdl.handle.net/2005/209
20. Peppin, S.S.L.& Wettlaufer, J.S.& Worster, M.G., "Experimental verification of morphological instability in freezing aqueous colloidal suspensions", Physical Review Letters, vol. 100, 2008, p.1-4, 238301
21. Pruppacher, H.R., "Some relation between the structure of the ice-solution interface and the free growth rate of ice crystals in supercooled aqueous solutions", Journal of Colloid and Interface Science, vol. 25, 1967, p.285-294
22. Sjursen, H.& Michelsen, A.& Holmstrup, M., "Effects of freeze-thaw cycles on microarthropods and nutrient availability in a sub-Arctic soil", Applied Soil Ecology, vol. 28, 2005, p.79-93
23. Sulkava, P.& Huhta, V., "Effects of hard frost and freeze-thaw cycles on decomposer communities and N mineralisation in boreal forest soil", Applied Soil Ecology, vol. 22, 2003, p.225-239
24. Usu, J.& Sano, J., "On the freezing of the droplets of aqueous solutions", Journal of the Meteorological Society of Japan, vol. 43, 1965, p.114-137
25. Yershov, E.D., "General Geocryology", 2004