Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[24394] Artykuł:

Processing and structure of laminated iron-intermetallics composites

Czasopismo: Archiwum Odlewnictwa   Tom: 8, Zeszyt: 4, Strony: 71-76
ISSN:  1897-3310
Opublikowano: 2008
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Marek Konieczny orcid logoWMiBMKatedra Technik Komputerowych i Uzbrojenia**1006.00  

Grupa MNiSW:  Publikacja w recenzowanym czasopiśmie wymienionym w wykazie ministra MNiSzW (część B)
Punkty MNiSW: 6


Web of Science LogoYADDA/CEON    
Słowa kluczowe:

materiały innowacyjne  kompozyt warstwowy  żelazo 


Keywords:

innovative materials  laminated composite  iron  intermetallic phase 



Abstract:

Using Fe sheets and Cu and Ti foils, Fe-intermetallic phases laminated composites have been fabricated through reactive sintering at 900°C for 15, 30 and 120 minutes in vacuum. After 15 minutes at 900°C all titanium layers were fully consumed but there were thin (about 40 žm) unreacted layers of copper. What was important, the copper layers could still block the diffusion of Ti to Fe. With increasing annealing time up to 30 minutes at 900°C the layers of Cu disappeared completely forming intermetallic phases. Thus, the final microstructure consisted of alternating layers of intermetallic phases and unreacted Fe metal. The microstructure was revealed in optical and scanning electron microscopy (SEM). The study exhibited the presence of different reaction products in the diffusion zone and their chemical compositions were determined by energy dispersive spectroscopy (EDS) [...]



B   I   B   L   I   O   G   R   A   F   I   A
[1] O. Yazar, T. Ediz, T. Ozturk, Control of macrostructure in deformation processing of metal/metal laminates, Acta Mater. 53 (2005) 375-381.
[2] X.K. Peng, R. Wuhrer, G. Heness, W.Y. Yeung, On the interface development and fracture behaviour of roll bonded copper/aluminium metal laminates, J. Mater. Sci. 34 (1999) 2029-2038.
[3] K.H. Zuo, D.L. Jiang, Q.L. Lin, Y. Zeng, Improving the mechanical properties of Al2O3/Ni laminated composites by adding Ni particles in Al2O3 layers, Mater. Sci. Eng. A443 (2007) 296-300.
[4] K. Hwu, B. Derby, Fracture of metal/ceramic laminates I - transition from single to multiple cracking, Acta Mater. 47 (1999) 529-543.
[5] M. Mitkov, D. Janković, D. Kićević, Microstructure and strength of solid state bonded Ni-AlO-NiAl laminates, Mater. Sci. Forum 282-283 (1998) 233-238.233
[6] S.M.R. Khalili, R.K. Mittal, S.G. Kalibar, A study of the mechanical properties of steel/aluminium/GRP laminates, Mater. Sci. Eng. A412 (2005) 137-140.
[7] L. Xu, Y.Y. Cui, Y.L. Hao, R. Yang, Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples, Mater. Sci. Eng. A435-436 (2006) 638-647.
[8] S. Tixier-Boni, H. Van Swygenhoven, Hardness enhancement of sputtered Ni3Al/Ni multilayers, Thin Solid Films 342 (1999) 188-193.
[9] A.S. Edelstain, R.K. Everett, G.G. Richardson, S.B. Qadri, J.C. Foley, J.H. Perepezko, Reaction kinetics and biasing in Al/Ni multilayers, Mater. Sci. Eng. A195 (1995) 13-19.
[10] J.C. Gachon, A.S. Rogachev, H.E. Grigoryan, E.V. Illarionova, J.J. Kuntz, D.Y. Kovalev, A.N. Nosyrev, N.V. Sachkova, P.A. Tsygankov, On the mechanism of heterogeneous reaction and phase formation in Ti/Al multilayer nanofilms, Acta Mater 53 (2005) 1225-1231.
[11] H. Wang, J. Han, S. Du, D.O. Northwood, Effects of Ni foil thickness on the microstructure and tensile properties of reaction synthesized multilayer composites, Mater. Sci. Eng. A445-446 (2007) 517-525.
[12] W.H. Xu, X.K. Meng, C.S. Yuan, A.H.W. Ngan, K. Wang, Z.G., The synthesis and mechanical property evaluation of Ni/Ni3Al microlaminates, Mater. Lett. 46 (2000) 303-308.
[13] A. Dziadoń, R. Mola, Compression behaviour of magnesium - eutectic mixture layered composite, Kompozyty (Composites) 4 (2008) 364-368.
[14] H. Cao, J.P.A. Lofvander, A.G. Evans, R.G. Rowe, D.W. Skelly, Mechanical properties of an in situ synthesized Nb/Nb3Al layered composite, Mater. Sci. Eng. A185 (1994) 87-95.
[15] D.R. Bloyer, K.T. Venkateswara Rao, R.O. Ritchie, Laminated Nb/Nb3Al composites: effect of layer thickness on fatigue and fracture behaviour, Mater. Sci. Eng. A239-240 (1997) 393-398.
[16] H. Takuda, H. Fujimoto, N. Hatta, Formabilities of steel/aluminium alloy laminated composite sheets, J. Mater. Sci. 33 (1998) 91-97.
[17] L.M. Peng, H. Li, J.H. Wang, Processing and mechanical behaviour of laminated titanium-titanium tri-aluminide (Ti-Al3Ti) composites, Mater. Sci. Eng. A406 (2005) 309-318.
[18] D. Alman, C.P. Dogan, J.A. Hawk, J.C. Rawers, Processing, structure and properties of metal-intermetallic layered composites, Mater. Sci. Eng. A192-193 (1995) 624-632.
[19] A. Dziadoń, M. Konieczny, Structural transformations at the Cu-Ti interface during synthesis of copper-intermetallics layered composite, Kovové Mater. 42 (2004) 42-50.
[20] M. Konieczny, A. Dziadoń, Strain behaviour of copper-intermetallic layered composite, Mater. Sci. Eng. A460-461 (2007) 238-242.
[21] M. Konieczny, Deformation mechanisms in copper-intermetallic layered composite at elevated temperatures, Kovové Mater. 45 (2007) 313-317.
[22] M. Konieczny, A. Dziadoń, Mechanical behaviour of multilayer metal-intermetallic laminate composite synthesised by reactive sintering of Cu/Ti foils, Arch. Metall. Mater. 52 (2007) 555-562.
[23] M. Konieczny, Processing and microstructural characterisation of laminated Ti-intermetallic composites synthesised using Ti and Cu foils, Mater. Lett. 62 (2008) 2600-2602.
[24] M. Ghosh, S. Chaterjee, Diffusion bonded transition joints of titanium to stainless steel with improved properties, Mater. Sci. Eng. A358 (2003) 152-158.
[25] H. Kato, S. Abe, T. Tomizawa, Interfacial structures and mechanical properties of steel-Ni and steel-Ti diffusion bonds, J. Mat. Sci. 32 (1997) 5225-5232.
[26] J. Murray, Alloy phase diagrams, ASM Handbook, Ed. ASM International 3, 1992, 180.
[27] S. Kundu, M. Ghosh, A. Laik, K. Bhanumurthy, G.B. Kale, S. Chatterjee, Diffusion bonding of commercially pure titanium to 304 stainless steel using copper interlayer, Mater. Sci. Eng. A407 (2005) 154-160.
[28] J.A. van Beek, A.A. Kodentsov, F.J.J. van Loo, Phase equilibria in the Cu-Fe-Ti system at 1123 K, J. Alloys Comp. 217 (1995) 97-103.
[29] V. Raghavan, Cu-Fe-Ti (Copper-Iron-Titanium), J. Phase Equilib. 23 (2002) 172-174.