Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[21364] Artykuł:

Fracture toughness of materials at the presence of plastic deformation

(odporność na pękanie materiałów przy obecności odkształceń plastycznych)
Czasopismo: Archives of Metallurgy and Materials   Tom: 52, Zeszyt: 2, Strony: 171-180
ISSN:  1733-3490
Wydawca:  POLISH ACAD SCIENCES COMMITTEE METALLURGY, AL MICKIEWICZA 30, AGH, PAW., A-4,III P., POK 312B, 30-059 KRAKOW, POLAND
Opublikowano: 2007
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Andrzej Neimitz orcid logoWMiBMKatedra Podstaw Konstrukcji Maszyn*10010.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 10
Klasyfikacja Web of Science: Article; Proceedings Paper


Web of Science Logo Web of Science     Web of Science LogoYADDA/CEON    
Słowa kluczowe:

odporność na pękanie  energia pękania 


Keywords:

fracture toughness  fracture energy  in- and out-of-plane constraint 



Streszczenie:

W pracy przeanalizowano problematykę odporności na pękanie. Pokazano, że odporność na pękanie nie jest stałą materiałową. Zależy ona także od kształtu i wymiarów elementów konstrukcyjnych. Zdefiniowano miary wiezów płaskich i w kierunku grubości oraz pokazano ich wpływ na odporność na pękanie. Idea "lokalnego podejścia" do procesu pękania jest krótko przypomniana i przytoczono niektóre rezultaty uzyskane przy stosowaniu tej idei do określania rzeczywistej odporności na pękanie. Przedstawiono też rezultaty oceny energii pękania dla materiałów plastycznych przy zastosowaniu tzw. Skowego modelu propagacji pęknięć.




Abstract:

In this paper the problem of fracture toughness is reanalyzed. It is shown that fracture toughness is not a material property. It depends on a shape and size of structural elements. The measures of in- and out-of-plane constraint are defined and their influence on fracture toughness is demonstrated. The idea of "local approach" to fracture is shortly described and some results obtained within this approach concerning the fracture toughness determination are presented. The idea of fracture energy is presented and this quantity is computed both for linear and non-linear materials using the step-like crack growth model.



B   I   B   L   I   O   G   R   A   F   I   A
[1] K. B. Broberg, Cracks and Fracture, Academic Press 1999.
[2] C. Berdin, J. Besson, S. Bugat, R. Desmorat, F. Feyel, S. Forest, E. Lorenz, E. Maire, T. Pardoen, A. Pineau, B. Tanguy, LOCAL APPROACH TO FRACTURE, Edited by Jacques Besson, Ecoles des Mines de Paris 2004.
[3] S. R. Bordet, Karstensen AD. Knowles DM and CS Wiesner, A new statistical local criterion for cleavage fracture in steel. Part I: model presentation
Part II: application to an offshore structural steel. ENGINEERING FRACTURE MECHANICS 72, 435-452 (Part I), 453-474 (Part II) (2005).
[4] S. R. Yu, Z. G. Yan, R. Cao, J. H. Chen, On the change of fracture mechanism with test temperature, ENGINEERING FRACTURE MECHANICS 73, 331-47 (2006).
[5] F. A. Mc Clintotk, A Criterion for Ductile Fracture by Growth of Holes. Journal of Applied Mechanics 4, 363-371 (1968).
[6] J. R. Rice, D. M. Tracey, On the Ductile Enlargement of Voids in Triaxial Stress Fields. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 17, 201-217 (1969).
[7] B. Martini, F. Mudry, A. Pineau, DuctileRupture of a 508 steel under non radial loading, ENGINEERING FRACTURE MECHANICS 22, 375-386.
[8] J. W. Hutchinson, Singular Behaviour at the End of a Tensile Crack in a Hardening Material, JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 16, 13-31 (1968).
[9] J. R. Rice, G. F. Rosengren, Plane Strain Deformation Near a Crack Tip in a Power-law Hardening Mate rial, JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 16, 1-12 (1968).
[10] J. Gałkiewicz, M. Graba, Algorithm for Determination of σij (n,θ), εij (n,θ), uii(n,θ), dn(n), In(n) Functions in Hutchinson-Rice-Rosengren Solution and its 3d Generalization, JOURNAL OF THEORETICAL AND APPLIED MECHANICS 44, 1, 19-30 (2006).
[11] J. R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks, JOURNAL OF APPLIED MECHANICS 35, 379-386 (1968).
[12] V. Kumar, M.d. German, C. F. Shih, An Engineering approach for elastic-plastic fracture analysis, ELECTRIC POWER RESEARCH INSTITUTE, Inc. Palo Alto, CA, 1932 , EPRI Report No. NP-1931.
[13] K. G. Broberg, Crack growth criteria and non-linear fracture Mechanics. J.MECH. PHYS.SOLIDS 19, 407-418 (1971).
[14] ASTME 1820-05, Standard Test Method for Measurement of Fracture Toughness.
[15] A. Neimitz, J. Gałkiewicz, Fracture Toughness of Structural Components. The Influence of Constraint, INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING 83, 42-54 (2006).
[16] J. G. D. Sumpter, A. T. Forbes, Constraint based analysis of shallow cracks in mild steels, PROCEEDINGS OF TWI/EWI/IS INT. CONE ON SHALLOW CRACK FRACTURE MECHANICS, TOUGHNESS TESTS AND APPLICATIONS, 1992, Paper 7. Cambridge U.K.
[17] J. R. Rice, P. C. Paris, J. G. Merkle, Some further results of J-integral analysis and estimates, in PROGRESS IN FLAW GROWTH AND FRACTURE TOUGHNESS TESTING, ASTM STP 536, American Society for Testing and Materials, 231-245 (1973).
[18] N. P. O&apos
Dowd, C. F. Shih, Family of crack-tip fields characterised by a triaxiality parameter-I. Structure of fields, JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 39, 898-1015 (1991).
[19] S. Yang, Y. J. Chao, M. A. Sutton, Higher Order Asymptotic Crack Tip Fields in a Power-Law Hardening Material, ENGINEERING FRACTURE MECHANICS 45, 1-20 (1993).
[20] G. P. Nikishkov, An algorithm and a computer program for the three-term asymptotic expansion of elastic-plastic crack tip stress and displacement fields. ENGINEERING FRACTURE MECHANICS 50, 65-83 (1995).
[21] Y. J. Chao, S. Yang, M. A. Sutton, On the fracture of solids characterized by one or two parameters: theory and practice. J. MECH. PHYS. SOLIDS 42, 629-47 (1994).
[22] G. P. Nikishkov, A. Brfickner-Foit, D. Munz, Calculation of the second fracture parameter for finite cracked bodies using three-term elastic-plastic asymptotic expansion
ENGINEERING FRACTURE MECHANICS 52, 685-701 (1995).
[23] W. Brocks, W. Schmitt, The second parameter in J-R curves: constraint or triaxiality?, CONSTRAINT EFFECTS IN FRACTURE THEORY AND APPLICATIONS: Second Volume, ASTM STP 1244, Mark Kirk and Ad Bakker, Eds., American Society for Testing and Materials, Philadelphia, 209-231 (1995).
[24] B. S. Henry, A. R. Luxmoore, The Stress Triaxiality Constraint and the Q-Value as a Ductile Fracture parameter, ENGINEERING FRACTURE MECHANICS 57, 4, 375-390 (1997).
[25] J. C. Newman, C. A. Bigelow, Shivakumar, Three-dimensional Elastic-plastic finite-element analysis of constraint variations in cracked bodies, ENGINEERING FRACTURE MECHANICS 46, 1, 1-13 (1993).
[26] W. Guo, Elastoplastic three dimensional crack border field - I. Singular structure of the field. ENGINEERING FRACTURE MECHANICS 46(1), 93-104 (1993).
[27] W. Guo, Elastoplastic three dimensional crack border field - II. Asymptotic solution for the field. ENGINEERING FRACTURE MECHANICS 46(1), 105-13 (1993).
[28] W. Guo, Elasto-plastic three-dimensional crack border field - III. Fracture parameters. ENGINEERING FRACTURE MECHANICS 51(1), 51-71 (1995).
[29] N. Beremin, A local criterion for cleavage fracture of a nuclear pressure vessel steel, Met. Transaction A 14A, 2277-2287.
[30] A. H. Sherry, D. G. Hooton, D. W. Beardsmore, D. P.G. Lidbury, Material constraint parameters for the assessment of shallow defects in structural components - Part II: constraint -based assessment of shallow cracks, ENGINEERING FRACTURE MECHANICS 72, 2396-2415 (2005).
[31] X. Gao, R. H. Dodds Jr., An engineering approach to assess constraint effects on cleavage fracture toughness, ENGINEERING FRACTURE MECHANICS 68, 263-283 (2001).
[32] FITNET Report, (European Fitness-for-service Network). Edited by M. Kocak, S. Webster, J.J. Janosch,R.A. Ainsworth,R. Koers, Contract No. GIRT-CT-2001-05071, (2006).
[33] SINTAP: structural assessment procedure for European industry, Final Procedure, 1999, Brite-Euram Project No. BE95-1426, British Steel.
[34] A. H. Sherry, M. A. Wilkes, D. W. Beardsmore, D. P. G. Lidbury, Material constraint parameters for the assessment of shallow defects in structural components - Part I: Parameter solutions, ENGINEERING FRACTURE MECHANICS 72, 2373-2395 (2005).
[35] R. O. Ritchie, J. F. Knott, J. R. Rice, On the Relationship Between Tensile Stress and Fracture Toughness in Mild Steels, JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 21, 395-410 (1973).
[36] N. P. O' Dowd, Application of two parameter approaches in elastic-plastic fracture mechanics, ENGINEERING FRACTURE MECHANICS 52, 3, 445-465 (1995).
[37] A. Neimitz, M. Graba, J. Gałkiewicz, A new analytical formulation of the Ritchie-Knot-Rice local fracture criterion, ENGINEERING FRACTURE MECHANICS 74, 8, 1308-1322 (2007)
[38] J. R. Rice, An Examination of the Fracture Mechanics chanics
Energy Balance from the Point of View of Continuum Mechanics, in Proceedings of the 1st International Conference on Fracture, Sendai, 1965 (eds. T. Yokobori, T. Kawasaki, and J. L. Swedlow), I, Japanese Society for Strength and Fracture of Materials, pp. 309-340, Tokyo 1966
[39] A. Neimit z, On the physical consequences of the jump-like crack growth model, in print.
[40] G. R. Irwin, Analysis of Stresses and Strains Near the . End of Crack Traversing a Plate, Journal of Applied Mechanics
1957
24: 361-64. Also reprinted in FRACTURE MECHANICS RETROSPECTIVE, EARLY CLASSIC - PAPERS, ed. by J.M.Barsom, ASTM RPS 1, 1987.
[41] Y. J. Chao, W. Ji, Cleavage fracture quantified bi J and A2 in CONSTRAINT EFFECTS IN FRACTURE THEORY AND APPLICATIONS
SECOND VOLUME, 1966. Eds M.Kirk and Ad Bakker, ASTM STP 1244, American Society for Testing and Materials 3, 20 (1995).